Tree Ring Isotopes- Ecology and Environment (Leavitt- August 2019)

 

Bibliography

 

Wood Anatomy and Dendrochronology

Cook, E.R. and Kairiukstis, L.A. 1990. Methods of Dendrochronology. Kluwer Academic, Dordrecht, The Netherlands.

Fritts, H.C. 1976.  Tree Rings and Climate.  Academic Press, New York.

Fritts, H.C., Vaganov, E.A., Sviderskaya, I.V. and Shashkin, A.V. 1991.  Climatic variation and tree-ring structure in conifers: empirical and mechanistic models of tree-ring width, number of cells, cell size, cell-wall thickness and wood density.  Climate Research 1: 97-116.

Panshin, A.J. and de Zeeuw, C. 1980. Textbook of Wood Technology.  McGraw-Hill, New York.

Schweingruber, F.H. 1987.  Tree Rings: Basic Applications to Dendrochronology.  D. Reidel (Kluwer), Dordrecht, The Netherlands.

Stokes, M.A. and Smiley, T.L. 1996.  An Introduction to Tree-Ring Dating.  University of Arizona Press, Tucson. (originally published by U. of Chicago, 1968)

Vaganov, E.A., Hughes, M.K. and Shashkin, A.V., 2006.  Growth Dynamics of Tree Rings: An Image of Past and Future Environments. Springer, New York, 354 p.

 

Overviews- Isotopes in Tree Rings

Edwards, T.W.D. 1993.  Interpreting past climate from stable isotopes in continental organic matter.  IN Climate Change in Continental Isotopic Records, Swart, P.K., Lohmann, K.C., McKenzie, J., and Savin, S. (eds.), American Geophysical Union, Geophysical Monograph No. 78, Washington, D.C., pp. 333-341.

Epstein, S. and Krishnamurthy, R.V. 1990. Environmental information in the isotope record in trees. Phil. Trans. R. Soc. Lond. A330: 427-439.

Francey, R.J. and Farquhar, G.D., 1982.  An explanation of 13C/12C variations in tree rings.  Nature 297: 28-31.

Gagen, M., McCarroll, D., Loader, N.J and Robertson, I., 2010. Stable isotopes in dendroclimatology: Moving beyond ‘potential’.  IN Dendroclimatology Progress and Prospects, Hughes, M.K., Swetnam, T.W. and Diaz, H.F. (eds.), Springer Verlag, pp. 147-172.  ISBN: 978-1-4020-4010-8, DOI: 10.1007/978-1-4020-5725-0 6.

Gray, J. 1981.  The use of stable-isotope data in climate reconstruction.  IN Climate and History, Wigley, T.M.L., Ingram, M.J. and Farmer, G. (eds.), Cambridge University Press, Cambridge, pp. 53-81.

Leavitt, S.W. 1987.  Stable-carbon isotopes in tree rings as environmental indicators.  IN The Practical Application of Trace Elements and Isotopes to Environmental Biogeochemistry and Mineral Resources Evaluation, Hurst, R.W., Davis, T.E. and Augustithis, S.S. (eds), Theophrastus Publications, S.A., Athens, pp. 61-74.

Leavitt, S.W. 1992.  Isotopes and trace elements in tree rings.  LUNDQUA Report 34: 182-190.

Leavitt, S.W. 1993.  Environmental information from 13C/12C ratios in wood.  IN Climate Change in Continental Isotopic Records, Swart, P.K., Lohmann, K.C., McKenzie, J., and Savin, S. (eds.), American Geophysical Union, Geophysical Monograph 78: 325-331.

Leavitt, S.W., 2010.  Tree-ring C-H-O isotope variability and sampling.  Science of the Total Environment 408: 5244–5253.

Lipp, J. and Trimborn, P. 1991. Long-term records and basic principles of tree-ring isotope data with emphasis on local environmental conditions. Paläoklimaforschung 6: 105–117.

Loader, N.J., McCarroll, D., Gagen, M., Robertson, I., Jalkanen, R., 2007. Extracting climatic information from stable isotopes in tree rings.  In Stable Isotopes as Indicators of Ecological Change, Dawson,T.E., Siegwolf, R.T.W. (eds.),  Terrestrial Ecology, Vol. 1, pp. 25-48, Elsevier.

Long, A. 1982.  Stable isotopes in tree rings.  IN Climate from Tree Rings, Hughes, M.K., Kelly, P.M., (eds.), Pilcher, J.R. and LaMarche, Jr., V.C. (eds), Cambridge University Press, Cambridge, pp. 13-18.

Managave, S. R., Ramesh, R., 2012.  Isotope dendroclimatology: a review with a special emphasis on tropics. In Handbook of Environmental Isotope Geochemistry (ed. Baskaran, M.), Springer, The Netherlands, pp. 811-834.

McCarroll, D. and Loader, N.J., 2006.  Isotopes in tree rings.  IN Isotopes in Palaeoenvironmental Research (Developments in Paleoenvironmental Research Series), M.J. Leng (ed.), Springer, The Netherlands, pp. 67-115.

McCarroll, D. and Loader, N.J., 2004.  Stable isotopes in tree rings.  Quaternary Science Reviews 23: 771-801.

Ramesh, R., Bhattacharya, S.K. and Gopalan, K. 1986.  Stable isotope systematics in tree cellulose as palaeoenvironmental indicators--a review.  J. Geol. Soc. India 27: 154-167.

Robertson, I., Leavitt, S.W., Loader, N.J. and Buhay, B., 2008. Progress in isotope dendroclimatology. Chemical Geology 252: EX1-EX4 (editorial)

Sternberg, L.S.L., 2009. Oxygen stable isotope ratios of tree-ring cellulose: the next phase of understanding. New Phytologist 181: 553–562.

Wigley, T.M.L. 1982.  Oxygen-18, carbon-13, and carbon-14 in tree rings.  IN Climate from Tree Rings, Hughes, M.K., Kelly, P.M., Pilcher, J.R. and LaMarche, Jr., V.C. (eds), Cambridge University Press, Cambridge, pp. 18-21.

 

Isotope Modelling

Berninger, F., Sonninen, E., Aalto, T. and Lloyd, J.  2000.  Modeling 13C discrimination in tree rings. Global Biogeochemical Cycles 14: 213-223.

Churakova (Sidorova), O.V., Shashkin, A.V., Siegwolf, R.T.W., Spahni, R., Launois, T., Saurer, M., Bryukhanova, M.V., Benkova, A.V., Kuptsova, A.V., Peylin, P., Vaganov, E.A., Masson-Delmotte, V, and Roden, J., 2015.  Application of eco-physiological models to tree-ring parameters of δ13C and δ18O measured in Siberian larch tree-rings. Dendrochronologia, DOI: 10.1016/j.dendro.2015.12.008.

Gessler, A., Ferrio, J.P., Hommel, R., Treydte, K., Werner, R.A., Monson, R.K., 2014.  Stable isotopes in tree rings: Towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiology 34:796–818.

Hemming, D., Fritts, H., Leavitt, S.W., Wright, W., Long, A., and Shashkin, A., 2001.  Modelling tree-ring d13C.  Dendrochronologia 19(1): 23-38.

Vaganov, E.A., Anchukaitis, K.J., Evans, M.N., 2011. How well understood are the processes that create dendroclimatic records? A mechanistic model of the climatic control on conifer tree-ring growth dynamics. In: Hughes M, Swetnam T, Diaz H (eds) Dendroclimatology. Developments in Paleoenvironmental Research, vol. 11, pp. 37–75. Springer, Dordrecht.

 

Preparation/Analysis

Anchukaitis, K.J., Evans, M.N., Lange, T., Smith, D.R., Leavitt, S.W., and Schrag, D.P., 2008. Purity and isotopic results from a rapid cellulose extraction method. Analytical Chemistry 80(6): 2035-2041.

Au, R., and Tardif, J.C., 2009.  Chemical pretreatment of Thuja occidentalis tree-rings: implications for dendroisotopic studies. Canadian Journal of Forest Research 39: 1777-1784.

Boettger, T., Haupt, M., Knöller, K., Weise, S.M., Waterhouse, J.S., Rinne, K.T., Loader, N.J., Sonninen, E., Jungner, H., Masson-Delmotte, V., Stievenard, M., Guillemin, M.-T., Pierre, M., Pazdur, A., Leuenberger, M., Filot, M., Saurer, M., Reynolds, C.E., Helle, G., and Schleser, G.H., 2007. Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: An interlaboratory comparison. Anal. Chem. 79: 4603-4612.

Borella, S., Leuenberger, M, Saurer, M. 1999. Analysis of δ18O  in tree rings: Wood-cellulose comparison and method dependent sensitivity.  J. of Geophysical Research 104: 19267-19273.

Borella, S., Leuenberger, M, Saurer, M. and Siegwolf, R. 1998. Reducing uncertainties in δ13C analysis of tree rings: pooling, milling, and cellulose extraction. J. of Geophysical Research 103: 19,519-19,526.

Brendel, O., Iannetta, P.P.M. and Stewart, D. 2000.  A rapid and simple method to isolate pure alpha-cellulose. Phytochemical Analysis 11: 7-10.

Cullen, L.E., and Grierson, P.F., 2006.  Is cellulose extraction necessary for developing stable carbon and oxygen isotopes chronologies from Callitris glaucophylla? Palaeogeography, Palaeoclimatology, Palaeoecology 236: 206-216.

Cullen, L.E. and Macfarlane, C., 2005. Comparison of cellulose extraction methods for analysis of stable-isotope ratios of carbon and oxygen in plant material. Tree Physiology 25: 619-625.

DeNiro, M.J. 1981. The effects of different methods of preparing cellulose nitrate on the determination of the D/H ratios of non-exchangeable hydrogen of cellulose. Earth and Planetary Science Lett. 54: 177-185.

Feng, X., Krishnamurthy, R.V. and Epstein, S. 1993.  Determination of D/H ratios of nonexchangeable hydrogen in cellulose: A method based on the cellulose water exchange reaction. Geochimica et Cosmochimica Acta 57: 4249-4256.

Filot, M.S., Leuenberger, M., Pazdur, A., and Boettger, T., 2006.  Rapid online equilibration method to determine the D/H ratios of non-exchangeable hydrogen in cellulose. Rapid Commun. Mass Spectrom. 20: 3337-3344.

Gaudinski, J.B., Dawson, T.E., Quideau, S., Schuur, E.A.G., Roden, J.S., Trumbore, S.E., Sandquist, D.R., Oh, S.-W., and Wasylishen. R.E., 2005. Comparative Analysis of Cellulose Preparation Techniques for Use with 13C, 14C, and 18O Isotopic Measurements. Anal. Chem. 77: 7212-7224.

Harlow, B.A., Marshall, J.D. and Robinson, A.P., 2006. A multi-species comparison of δ13C from whole wood, extractive-free wood and holocellulose. Tree Physiology 26: 767-774.

Haupt, M., and Boettger, T., 2006.  Microwave-supported preparation of alpha-cellulose for analysis of delta 13C in tree rings. Anal. Chem. 78: 7248-7252

Hoper, S.T., McCormac, F.G., Hogg, A.G., Higham, T.F.G. and Head, M.J., 1998.  Evaluation of wood pretreatments on oak and cedar.  Radiocarbon 40: 45-50.

Knöller, K., Boettger, T., Weise, S.M. and Gehre, M., 2005.  Carbon isotope analyses of cellulose using two different on-line techniques (elemental analysis and high-temperature pyrolysis) – a comparison. Rapid Communications in Mass Spectrometry 19: 343-348.

Knöller, K., Boettger, T., Haupt, M. and Weise, S.M., 2007. Routine hydrogen isotope measurement of cellulose nitrate by high-temperature pyrolysis – reference materials and precision. Rapid Communications in Mass Spectrometry 21: 3085-3092.

Krishnamurthy, R.V. and Machavaram, M. 1998. Hydrogen isotope exchange in thermally stressed cellulose. Chemical Geology (Isotope Geosciemce Section) 152: 85-96

Laumer, W., Andreu, L., Helle, G., Schleser, G. H., Wieloch, T. and Wissel, H., 2009.  A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses. Rapid Communications in Mass Spectrometry 23: 1934-1940.

Leavitt, S.W. and Danzer, S.R. 1993.  Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis.  Analytical Chemistry 65: 87-89.

Loader, N.J. and Buhay, W.M. 1999. Rapid catalytic oxidation of CO to CO2-on the development of a new approach to on-line oxygen isotope analysis of organic matter. Rapid Communication in Mass Spectrometry 13: 1828-1832.

Loader, N.J., Robertson, I., Barker, A.C., Switsur, V.R. and Waterhouse, J.S. 1997.  A modified method for the batch processing of small wholewood samples to a-cellulose.  Chemical Geology (Isotope Geoscience) 136: 313-317.

Loader, N.J., Robertson, I., Lucke, A. and Helle, G., 2002.  Preparation of holocellulose from standard increment cores for stable carbon isotope analysis.  Swansea Geographer 37: 1-9.

Macfarlane, C., Warren, C., White, D. and Adams, M.. 1999. A rapid and simple method for processing wood to crude cellulose for analysis of stable carbon isotopes in tree rings. Tree Physiology 19: 831-835.

Richard, B., Quilčs, F., Carteret, C. and Brendel, O., 2014.  Infrared spectroscopy and multivariate analysis to appraise α-cellulose extracted from wood for stable carbon isotope measurements. Chemical Geology 381:168-179.

Rinne, K.T., Boettger T., Loader, N.J., Robertson, I., Switsur, V.R. and Waterhouse, J.S., 2005.  On the purification of α-cellulose from resinous wood for stable isotope (H, C and O) analysis.  Chemical Geology 222: 75-82

Sauer, P.E. and Sternberg, L.d.S.L.O., 1994.  Improved method for the determination of the oxygen isotopic composition of cellulose.  Analytical Chemistry 66: 2409-2411.

Saurer, M., Robertson, I., Siegwolf, R. and Leuenberger, M. 1998.  Oxygen isotope analysis of cellulose: An interlaboratory comparison.  Analytical Chemistry 70: 2074-2080.

Saurer, M. and Siegwolf, R., 2004. Pyrolysis techniques for oxygen isotope analysis of ellulose.  IN Handbook of Stable Isotope Analytical Techniques, pp. 497-506.

Sheu, D.D. and Chiu, C.H. 1995. Evaluation of cellulose extraction procedures for stable carbon isotope measurement in tree ring research. Intern. J. Environ. Anal. Chem. 59: 59-67.

Sternberg, L.S.L. 1989.  Oxygen and hydrogen isotope measurements in plant cellulose analysis.  IN Plant Fibres. Modern Methods of Plant Analysis V. 10 (ed. H.F. Linskens and J.F. Jackson), pp. 89-99. Springer-Verlag.

Taylor, A.M., Brooks, R.J., Lachenbruch, B., Morrell, J.J. and Voelker, S., 2008. Correlation of carbon isotope ratios in the cellulose and wood extractives of Douglas-fir.  Dendrochronologia 26(2): 125-141.

Verheyden, A., Roggeman, M., Bouillon, S., Elskens, M., Beeckman, H., and Koedam, N., 2005. Comparison between δ13C of α-cellulose and bulk wood in the mangrove tree Rhizophora mucronata: Implications for dendrochemistry .  Chemical Geology 219: 275-282.

Wieloch, T., Helle, G., Heinrich, I., Voigt, M., and Schyma, P., 2011.  A novel device for batch-wise isolation of α-cellulose from small-amount wholewood samples. Dendrochronologia 29(2):115-117.

Young, G.H.F., Loader, N.J., and McCarroll, D., 2011. A large scale comparative study of stable carbon isotope ratios determined using on-line combustion and low-temperature pyrolysis techniques. Palaeogeography, Palaeoclimatology, Palaeoecology 300:23–28. doi:http://dx.doi.org/10.1016/j.palaeo.2010.11.018.

 

δD and/or δ18O in Tree Rings

An, W., Liu, X., Leavitt, S.W., Ren, J., Xu, G., Zeng, X., Wang, W., Qin, D., and Ren, J., 2013.  Relative humidity history on the Batang–Litang Plateau of western China since 1755 reconstructed from tree-ring δ18O and δD. Climate Dynamics 42:2639–2654, DOI 10.1007/s00382-013-1937-z.

An, W., Liu, X., Leavitt, S.W., Sun, W., Wang, W., Wang, Y., Xu, G., Chen, T., Ren, J., and Qin, D., 2012. Specific climatic signals recorded in earlywood and latewood δ18O of tree rings in southwestern China. Tellus B 64(1):18703, http://dx.doi.org/10.3402/tellusb.v64i0.18703.

Anchukaitis, K.J. and Evans, M.N., 2010. Tropical cloud forest climate variability and the demise of the Monteverde golden toad.  Proceedings of the National Academy of Science U.S.A. 107(11):5036-5040.

Anchukaitis, K.J., M.N. Evans, N.T. Wheelwright, and D.P. Schrag, 2008.  Stable isotope chronology and climate signal calibration in neotropical cloud forest trees, Journal of Geophysical Research 113: G03030, doi:10.1029/2007JG000613.

Anderson, W.T., Bernasconi, S.M., McKenzie, J.A., Saurer, M. and Schweingruber, F., 2002.  Model evaluation for reconstructing the oxygen isotopic composition in precipitation from tree ring cellulose over the last century.  Chemical Geology 182: 121-137.

Andreu -Hayles, L., Ummenhofer, C.C., Barriendos, M., Schleser, G.H., Helle, G., Leuenberger, M., Gutiérrez, E., and Cook, E.R., 2017. 400 Years of summer hydroclimate from stable isotopes in Iberian trees, Climate Dynamics 49(1): 143-161, doi: 10.1007/s00382 -016 -33323332-z.

Augusti, A., Betson, T.R., and Schleucher, J., 2006.  Hydrogen exchange during cellulose synthesis distinguishes climatic and biochemical isotope fractionations in tree rings.  New Phytologist 172: 490-499.

Augusti, A., Betson, T.R. and Schleucher, J., 2008.  Deriving correlated climate and physiological signals from deuterium isotopomers in tree rings.  Chemical Geology 252:1-8.

Augusti, A., and Schleucher, J., 2007.  The ins and outs of stable isotopes in plants.  New Phytologist 174:473–475.

Ballantyne, A.P., Baker, P.A., Chambers, J.Q., Villalba, R., and Argollo, J., 2010. Regional differences in South American monsoon precipitation inferred from the growth and isotopic composition of tropical trees. Earth Interactions 15:1-35, doi:10.1175/2010EI277.1.

Barbour, M.M., Andrews, T.J., and Farquhar, G.D., 2001. Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Australian Journal of Plant Physiology 28: 335-348.

Battipaglia, G., Jäggi, M., Saurer, M., Siegwolf, R.T.W. and Cotrufo, M.F., 2008. Climatic sensitivity of δ18O in the wood and cellulose of tree rings:  Results from a mixed stand of Acer pseudoplatanus and Fagus sylvatica L. Palaeogeography, Palaeoclimatology, Palaeoecology 261:193–202.

Battipaglia, G., Maya, J., Saurer, M., Siegwolf, R.T.W., Francesca Cotrufo, M., 2008. Climatic sensitivity of δ18O in the wood and cellulose of tree rings: Results from a mixed stand of Acer pseudoplatanus L. and Fagus sylvatica L. Palaeogeography, Palaeoclimatology, Palaeoecology 261(1–2):193-202.

Berkelhammer, M., and Stott, L. D., 2008.  Recent and dramatic changes in Pacific storm trajectories recorded in δ18O from bristlecone pine tree-ring cellulose. Geochemistry, Geophysics, Geosystems 9(4), Q04008, doi:10.1029/2007GC001803.

Berkelhammer, M., and Stott, L. D., 2009.  Modeled and observed intra-ring δ18O cycles within late Holocene bristlecone pine tree samples.  Chemical Geology 264:13–23.

Berkelhammer, M., and Stott, L. D., 2011.  Correction to “Recent and dramatic changes in Pacific storm trajectories as recorded in the δ18O of Bristlecone Pine tree ring cellulose”. Geochemistry, Geophysics, Geosystems 12, Q09002, doi:10.1029/2011GC003765.

Brienen, R.J.W., Helle, G., Pons, T.L., Guyot, J.L., and Gloor, M., 2012. Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Nińo-Southern Oscillation variability. Proceedings of the National Academy of Sciences 109(42):16957-16962.

Buhay, W.M. and Edwards, T.W.D., 1995. Climate in Southwestern Ontario, Canada, between AD 1610 and 1880 inferred from oxygen and hydrogen isotopic measurements of wood cellulose from trees in different hydrologic settings. Quaternary Research 44: 438-446.

Buhay, W.M., Edwards, T.W.D. and  Aravena, R. 1996. Evaluating kinetic fractionation factors used for ecologic and paleoclimatic reconstructions from oxygen and hydrogen isotope ratios in plant water and cellulose. Geochimica et Cosmochimica Acta.60: 2209-2218.

Burk, R.L. and Stuiver, M., 1981.  Oxygen isotope ratios in trees reflect mean annual temperature and humidity.  Science 211: 1417-1419.

Busch, D., Ingraham, N.L. and Smith, S.D. 1992. Water uptake in woody riparian phreatophytes of the southwestern United States: a stable isotope study. Ecological Applications 2: 45-459.

Csank, A.Z., Patterson, W.P., Eglington, B.M., Rybczynski, N., Basinger, J.F., 2011. Climate variability in the Early Pliocene Arctic: Annually resolved evidence from stable isotope values of sub-fossil wood, Ellesmere Island, Canada.  Palaeogeography, Palaeoclimatology, Palaeoecology 308: 339-349.

Cullen, L.E. and Grierson, P.F. 2006. Is cellulose extraction necessary for developing stable carbon and oxygen isotopes chronologies from Callitris glaucophylla?  Paleogeography, paleoclimatology, Paleoecology 236: 206-216.

Dawson, T.E. and Ehleringer, J.R. 1991. Streamside trees that do not use stream water. Nature 350: 335-337.

Dawson, T.E. and Ehleringer, J.R. 1993. Isotopic enrichment of water in the “woody” tissues of plants: implications for plant water source, water uptake, and other studies which use the stable isotopic compositio of cellulose. Geochim. Cosmochim. Acta 57: 3487-3492.

DeNiro, M.J. and Cooper, L.W. 1989. Post-photosynthetic modification of oxygen isotope ratios of carbohydrates in the potato: implications for paleoclimatic reconstruction based upon isotopic analysis of wood cellulose. Geochimica et Cosmochimica Acta. 53: 2573-2580.

DeNiro, M.J. and Epstein, S. 1979.  Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide, and water.  Science 204: 51-53.

Dubois, A.D. and Ferguson, D.K. 1985.  The climatic history of pine in the Cairngorms based on radiocarbon dates and stable isotope analysis with an account of the events leading up to its colonization.  Review of  Palaeobotany and Palynology 46: 55-80.

Dubois, A.D. and Ferguson, D.K. 1988. Additional evidence for the climatic history of pine in the Cairngorms, Scotland, based on radiocarbon dates and tree ring D/H ratios. Review of Palaeobotany and Palynology 54: 181-185.

Edwards, T.W.D. 1990. New contribution to isotope dendroclimatology from studies of plants. Geochimica et Cosmochimica Acta 54: 1843-1844.

Edwards, T.W.D. and Fritz, P. 1986.  Assessing meteoric water composition and relative humidity from 18O and 2H in wood cellulose: paleoclimatic implications for southern Ontario, Canada. Applied Geochemistry 1: 715-723.

Ehleringer, J.R. and Dawson, T.E. 1992. Water uptake by plants: perspectives from stable isotope composition. Plant, Cell and Environment 15: 1073-1082. 

Epstein, S., 1995. The isotopic climate records in the Alleröd-Břlling-Younger Dryas and post Younger Dryas events. Global Biogeochemical Cycles 9: 557-563.

Epstein, S., Xu, X. and Carrara, P. 1999. A climatic record from 14C-dated wood fragments from southwestern Colorado. Global Biogeochemical Cycles 13: 781-784.

Epstein, S. and Yapp, C.J. 1976. Climatic implications of the D/H ratio of hydrogen in C-H groups in tree cellulose. Earth and Planetary Science Letters 30: 252-261.

Epstein, S., Thompson, P. and Yapp, C.J. 1977.  Oxygen and hydrogen isotopic ratios in plant cellulose.  Science 198: 1209-1215.

Epstein, S., Yapp, C.J. and Hall, J.H. 1976.  The determination of the D/H ratio of non-exchangeable hydrogen in cellulose extracted from aquatic and land plants.  Earth Plant. Sci.Lett. 30: 241-251.

Evans, M.N. and D.P. Schrag, 2004. A stable isotope-based approach to tropical dendroclimatology. Geochim. et Cosmochim. Acta 68(16): 3295-3305, DOI: 10.1016/j.gca.2004.01.006

Feng, X., Cui, H., Tang, K. and Conkey, L.E., 1999. Tree-ring δD as an indicator of Asian Monsoon Intensity.  Quaternary Research 51: 262-266.

Feng, X. and Epstein, S. 1994.  Climatic implications of an 8000-year hydrogen isotope time series from bristlecone pine trees.  Science 265: 1079-1081.

Feng, X., Reddington, A.L., Faiia, A.M., Posmentier, E.S., Shu, Y. and Xu, X., 2007.  The changes in North American atmospheric circulation patterns indicated by wood cellulose. Geology 35(2): 163–166;

Friedman, I., Carrara, P. and Gleason, J. 1988.  Isotopic evidence of Holocene climatic change in the San Juan Mountains, Colorado.  Quaternary Research 30: 350-353.

Gessler, A., Brandes, E., Keitel, C., Boda, S., Kayler, Z.E., Granier, A., Barbour, M., Farquhar, G.D., Treydte, K., 2013. The oxygen isotope enrichment of leaf-exported assimilates-Does it always reflect lamina leaf water enrichment? New Phytologist 200:144-157.

Gray, J. and Song, S.J. 1984.  Climatic implications of the natural variations of D/H ratios in tree ring cellulose.  Earth and Planetary Science Letters 70: 129-138.

Gray, J. and Thompson, P. 1976.  Climatic information from 18O/16O ratios of cellulose in tree rings.  Nature 262: 481-482.

Gray, J. and Thompson, P. 1978. Reply to Wigley, T.M.L., Gray, B.M. and Kelly, P.M. 1978. Climatic interpretation of δ18O and δD in tree rings. Nature 271: 94.

Grießinger, J., Bräuning, A., Helle, G., Thomas, A., and Schleser, G., 2011.  Late Holocene Asian summer monsoosanon variability reflected by δ18O in tree-rings from Tibetan junipers.  Geophysical Research Letters 38: L03701, doi:10.1029/2010GL045988.

Grinsted, M.J. and Wilson, A.T. 1979. Hydrogen isotopic chemistry of cellulose and other organic material of geochemical interest. New Zealand J. of Science 22: 281-287.

Guerrieri, R., Siegwolf, R.T.W., Saurer, M., Ripullone, F., Mencuccini, M., and Borghetti, M., 2010.  Anthropogenic NOx emissions alter the intrinsic water-use efficiency (WUEi) for Quercus cerris stands under Mediterranean climate conditions. Environmental Pollution 158:2841-2847.

Hill D. J.; Csank A. Z.; Dolan A. M., 2012. Pliocene climate variability: Northern Annular Mode in models and tree-ring data. Palaeogeography, Palaeoclimatology, Palaeoecology 309: 118-127, DOI: 10.1016/j.palaeo.2011.04.003.  

Hill, S.A., Waterhouse, J.S., Field, E.M., Switsur, V.R. and AP Rees, T. 1995. Rapid recycling of triose phosphates in oak stem tissue. Plant, Cell and Environment 18: 931-936.

Jäggi, M., Saurer, M., Fuhrer, J. and Siegwolf, R. 2003.  Seasonality of δ18O in needles and wood of Picea abies. New Phytologist 158: 51–59.

Jahren, A.H. and Sternberg, L.S.L., 2002. Eocene meridional weather patterns reflected in the oxygen isotopes of arctic fossil wood. GSA Today 1: 4-9.

Jahren, A.H. and Sternberg, L.S.L., 2003.  Humidity estimate for the middle-Eocene Arctic rainforest: Geology 31: 463-466.

Kahmen, A., Sachse, D., Arndt, S.K., Tu, K.P., Farrington, H., Vitousek, P.M., and Dawson, T.E., 2011. Cellulose δ18O is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants. Proceedings of the National Academy of Sciences 108:1981-1986.

Kress, A., Saurer, M., Buntgen, U., Treydte, K.S., Bugmann, H. and Siegwolf, R.T.W., 2009. Summer temperature dependency of larch budmoth outbreaks revealed by Alpine tree-ring isotope chronologies. Oecologia 160(2): 353-365.

Krishnamurthy, R.V. and Epstein, S. 1985.  Tree ring D/H ratio from Kenya, East Africa and its palaeoclimatic significance.  Nature 317: 160-162.

Labotka, D.M., Grissino-Mayer, H.D., Mora, C.I., and Johnson, E.J., 2015. Patterns of moisture source variability and vlimate oscillations in the Southeastern United States: A four century seasonally resolved tree-ring oxygen isotope record. Climate Dynamics 46:2145–2154, doi: 10.1007/s00382-015-2694-y.

Labuhn, I., Daux, V., Girardclos, O., Stievenard, M., Pierre, M., and Masson-Delmotte, V., 2016. French summer droughts since 1326 CE: A reconstruction based on tree ring cellulose δ18O. Climate of the Past 12:1101–1117, doi:10.5194/cp-12-1101-2016.

Labuhn, I., Daux, V., Pierre, M., Stievenard, M., Girardclos, O., Féron, A., Genty, D., and Masson-Delmotte, V., Mestre, O., 2014. Tree age, site and climate controls on tree ring cellulose δ18O: A case study on oak trees from south-western France. Dendrochronologia 32:78–89 doi:10.1016/j.dendro.2013.11.001.

Li, Q., Nakatsuka T., Kawamura K., Liu Y. and Song H.M., 2011a. Hydroclimate variability in the North China Plain and its link with El Nino-Southern Oscillation since 1784 AD: Insights from tree-ring cellulose δ18O. Journal of Geophysical Research 116(D22), D22106.

Li, Q., Nakatsuka T., Kawamura K., Liu Y, and Song H.M., 2011b. Regional hydroclimate and precipitation δ18O from different tree species in semi-arid Northern China. Chemical Geology 282: 19-28.

Lipp, J., Trimborn, P. and Becker, B., 1992.  Rhythmic δD fluctuations in the tree-ring latewood cellulose of spruce trees (Picea abies L.).  Dendrochronologia 10: 9-22.

Lipp, J., Trimborn, P., Edwards, T.W.D., Waisel, Y. and Yakir, D. 1986.  Climatic effects on the 18O and 13C of cellulose in the desert tree Tamarix jordanis.  Geochimica et Cosmochimica Acta 60: 3305-3309.

Lipp, J., Trimborn, P., Graff, W. and Becker, B. 1993.  Climatic significance of D/H ratios in the cellulose of late wood in tree rings from spruce (Picea abies L.).  IN Proceedings International Symposium on Applications of Isotopic Techniques in Studying Past and Current Environmental Changes in the Hydrosphere, 19-23 April 1993, IAEA-SM-329/44, Vienna, pp. 395-405.

Liu, W., Feng, X., Liu, Y., Zhang, Q., An, Z., 2004. δ18O values of tree rings as a proxy of monsoon precipitation in arid Northwest China. Chemical Geology 206: 73-80.

Liu, Y., Cobb, K.M., Song, H., Li, Q., Li, C.Y., Nakatsuka, T., An, Z., Zhou, W., Cai, Q., Li, J., Leavitt, S.W., Sun, C., Mei, R., Shen, C.-C., Chan, M.-H., Sun, J., Yan, L., Lei, Y., Ma, Y., Li, X., Chen, D., Linderholm, H.W., 2017.  Recent enhancement of central Pacific El Nińo variability relative to last eight centuries.  Nature Communications 8, doi:10.1038/ncomms15386.

Liu, Y., Cai, Q., Liu, W., Yang, Y., Sun, J., Song, H. and Li, X., 2008.  Monsoon precipitation variation recorded by tree-ring δ18O in arid Northwest China since AD 1878.  Chemical Geology 252:56-61

Luckman, B. and Gray, J. 1990. Oxygen isotope ratios from tree rings containing compression wood. Quaternary Research 33(1): 117-121.

Luckman, B.H., Hamilton, J.P., Josca, L.A., and Gray, J., 1985. Proxy climatic data from tree rings at Lake Louise, Alberta: A preliminary report. Geographie Physique et Quaternaire 39: 127-140.

Luo, Y. and Sternberg, L. 1991.  Deuterium heterogeneity in starch and cellulose nitrate of CAM and C3 plants.  Phytochemistry 30: 1095-1098.

Managave, SR., Sheshshayee, M., Bhattacharyya, A., and Ramesh, R., 2010.  Intra-annual variations of teak cellulose δ18O in Kerala, India: implications to the reconstruction of past summer and winter monsoon rains. Climate Dynamics: 37(3-4):555-567.

Managave, S.R., Sheshshayee, M.S., Borgaonkar, H.P. and Ramesh, R., 2010. Past break-monsoon conditions detectable by high resolution intra-annual δ18O analysis of teak rings. Geophysical Research Letters 37, L05702, doi:10.1029/2009GL041172.

Managave, S.R., Sheshshayee M.S., Borgaonkar H.P. and Ramesh R., 2010. Intra-annual oxygen isotope variations in central Indian teak cellulose: possibility of improved resolution for past monsoon reconstruction. Current Science 98:930-937.

Managave, S.R., Sheshshayee, M.S., Ramesh, R., Borgaonkar, H.P., Shahd, S.K., and  Bhattacharyya, A., 2011. Response of cellulose oxygen isotope values of teak trees in differing monsoon environments to monsoon rainfall.  Dendrochronologia 29:89–97.

Marshall, J.D. and Monserud, R.A. 2006. Co-occurring species differ in tree-ring δ18O trends. Tree Physiology 26: 1055–1066.

Miller, D.L., Mora, C.I., Grissino-Mayer, H.D., Mock, C.J., Uhle, M.E. and Sharp Z., 2006. Tree ring isotope record of tropical cyclone activity. Proc. Nat. Acad. Sci. 103:14294-14297.

Mora, C.I., Miller, D.L., and Grissino-Mayer, H.D., 2007. Oxygen isotope proxies in tree-ring cellulose: Tropical cyclones, drought, and climate oscillations. In Stable Isotopes as Indicators of Ecological Change, Dawson,T.E., Siegwolf, R.T.W. (eds.),  Terrestrial Ecology, Vol. 1, pp. 63-75, Elsevier.

Norström, E., Holmgren, K. and Mörth, C.-M., 2008. A 600-year-long δ18O record from cellulose of Breonadia salicina trees, South Africa. Dendrochronologia 26(1):21-33.

Pendall, E.G. 1997.  Precipitation seasonality recorded in D/H ratios of pinyon pine cellulose in the southwestern United States.  Ph.D. Dissertation, University of Arizona, 263 pp.

Qian, J., Deng, Z., Tu, Q., Wang, S., and Huang, Y., 2002.  Climatic significance of δD time series in tree rings from Tianmu Mountain.  Science in China (Series D) 44(12): 1140-1146.

Ramesh, R., Bhattacharya, S.K. and Gopalan, K. 1985. Dendrochronological implications of isotope coherence in trees from Kashmir Valley, India. Nature 317: 6040, 802-804.

Ramesh, R., Bhattacharya, S.K. and Gopalan, K. 1986.  Climatic correlations in the stable isotope records of silver fir (Abies pindrow) trees from Kashmir, India.  Earth Planet. Sci. Lett. 79:

Ramesh, R., Bhattacharya, S.K. and Gopalan, K. 1988.  Climatic significance of variations in the width and stable isotope ratios in tree rings.  IN: Science and Archaeology Glasgow 1987, Slater, E.A. and Tate, J.O. (eds.), B.A.R., Oxford, pp. 591-609.

Ramesh, R., Bhattacharya, S.K. and Pant, G.B. 1989. Climatic significance of δD variations in a tropical tree species from India.  Nature 337: 149-150.

Rebetz, M, Saurer, M. and Cherubini, P., 2003.  To what extent can oxygen isotopes in tree rings and precipitation be used to reconstruct past atmospheric temperature? A case study.  Climatic Change 61: 237-248.

Reynolds-Henne, C.E., Saurer, M. and Siegwolf , R.T.W., 2009. Temperature versus species-specific influences on the stable oxygen isotope ratio of tree rings. Trees-Structure and Function 23(4): 801-811.

Richter, S.L., Johnson, A.H., Dranoff, M.M., LePage, B.A. and Williams, C.J., 2008. Oxygen isotope ratios in fossil wood cellulose: Isotopic composition of Eocene- to Holocene-aged cellulose.  Geochimica et Cosmochimica Acta 72(12): 2744-2753.

Richter, S.L., Johnson, A.H., Dranoff, M.M. and Taylor K.D., 2008.  Continental-scale patterns in modern wood cellulose δ18O: Implications for interpreting paleo-wood cellulose δ18O.  Geochimica et Cosmochimica Acta 72(12): 2735-2743.

Rinne, K.T., Loader, N.J., Switsur, V.R., and Waterhouse, J.S., 2013. 400-year May–August precipitation reconstruction for Southern England using oxygen isotopes in tree rings. Quaternary Science Reviews 60:13–25. doi:10.1016/j.quascirev.2012.10.048.

Robertson, I., Waterhouse, J.S., Barker, A.C., Carter, A.H.C., Switsur, V.R., 2001.  Oxygen isotope ratios of oak in east England: Implications for reconstructing the isotopic composition of precipitation.  Earth Planet. Sci. Lett. 191: 21-31.

Roden, J.S. and Ehleringer, J.R., 1999. Hydrogen and oxygen isotope ratios of tree-ring cellulose for riparian trees grown long-term under hydroponic, controlled environmental environments. Oecologia 121: 467-477.

Roden, J.S. and Ehleringer, J.R., 1999. Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig-Gordon model under wide-ranging environmental conditions.  Plant Phys. 120: 1165-1173

Roden, J.S. and Ehleringer, J.R., 2000. Hydrogen and oxygen isotope ratios of tree ring cellulose for field-grown riparian trees.  Oecologia 123: 481-489.

Roden J.S. and Ehleringer J.R., 2000. There is no temperature dependence of net biochemical fractionation of hydrogen and oxygen isotopes in tree-ring cellulose.  Isotopes in Environmental and Health Studies 36:303-317. doi:10.1080/10256010008036389.

Roden, J.S., Lin, G. and Ehleringer, J.R., 1999. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree ring cellulose. Geochimica et Cosmochimica Acta 64: 21-35.

Rozanski, K., Araguas-Araguas, L. and Gonfiantini, R. 1992. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science 258: 981-985.

Sano, M., Dimri, A.P., Ramesh, R., Xu, C., Li, Z., and Nakatsuka, T., 2017. Moisture source signals preserved in a 242-year tree-ring δ18O chronology in the western Himalaya. Global and Planetary Change 157:73-82.

Sano, M., Sheshshayee, M.S., Managave, S., Ramesh, R., Sukumar, R. and Sweda T., 2010. Climatic potential of δ18O of Abies spectabilis from the Nepal Himalaya. Dendrochronologia 28: 93–98.

Sano, M., Tshering, P., Komori, J., Fujita, K., Xu, C., and Nakatsuka, T., 2013.  May–September precipitation in the Bhutan Himalaya since 1743 as reconstructed from tree-ring cellulose δ18O. Journal of Geophysical Research- Atmospheres 118: 8399-8410.

Sano, M., Xu, C., Nakatsuka, T., 2012.  A 300-year Vietnam hydroclimate and ENSO variability record reconstructed from tree ring δ18O. Journal of Geophysical Research 117(D12): doi:10.1029/2012JD017749.

Saurer, M., Borella, S. and Leuenberger, M. 1997. δ18O of tree rings of beech (Fagus silvatica) as a record of δ18O of the growing season precipitation.  Tellus 49B: 80-92.

Saurer, M., Schweingruber, F., Vaganov, E.A., Shiyatov, S.G. and Siegwolf, R., 2002.  Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia.  Geophys. Res. Lett. 29: 10.1029/2001GL013739.

Savard, M.M., Bégin, C., Smirnoff, A., Marion, J., Sharp, Z., and Parent, M., 2005.  Fractionation change of hydrogen isotopes in trees due to atmospheric pollutants.  Geochim. Cosmochim. Acta 69: 3723-3731.

Schiegl, W.E. 1974. Climatic significance of deuterium abundance in growth rings of Picea. Nature 251: 582-584.

Shu, Y., Feng, X., Gazis, C., Anderson, D., Anthony, M.F., Tank, K., and Ettl, G., 2005. Relative humidity recorded in tree rings: A case study along precipitation gradient in the Olympic Mountains, Washington, USA. Geochimica et Cosmochimica Acta 69: 791-799.

Smith, B.N. and Ziegler, H. 1990. Isotopic fractionation Acta 69: 791-799.

Smith, B.N. and Ziegler, H. 1990. Isotopic fractionation of hydrogen in plants. Bot. Acta 103: 335-342.

 

Song, X., Clark, K.S., and Helliker, B.R., 2014.  Interpreting species-specific variation in tree-ring oxygen isotope ratios among three temperate forest trees.  Plant, Cell and Environment 37:2169–2182.

Sternberg, L.S.L., Anderson, W.T. and Morrison, K., 2003.  Separating soil and leaf water 18O isotopic signals in plant stem cellulose.  Geochimica et Cosmochimica Acta 67: 2561-2566.

Terwilliger, V.J. and DeNiro, M.J., 1995.  Hydrogen isotope fractionation in wood-producing avocado seedlings: Biological constraints to paleoclimate interpretations of δD values in tree ring cellulose nitrate.  Geochimica et Cosmochimica Acta 69: 791-799.

Smith, B.N. and Ziegler, H. 1990. Isotopic fractionation 24: 5199-5207.

Treydte, K., Boda, S., Graf Pannatier, E., Fonti, P., Frank, D., Ullrich, B., Saurer, M., Siegwolf, R., Battipaglia, G., Werner, W., and Gessler, A., 2014.  Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: Source water versus needle water enrichment.  New Phytologist 202(3):772-83

Treydte, K.S., Schleser, G.H., Helle, G., Frank, D.C., Winiger, M., Haug, G.H., and Esper, J., 2006. The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440: 1179-1182.

Tsuji, H., Nakatsuka, T. and Takagi, K., 2006.  δ18O of tree-ring cellulose in two species (spruce and oak) as proxies of precipitation amount and relative humidity in northern Japan. Chemical Geology 231: 67-76

Voelker, S.L., Stambaugh, M.C., Guyette, R.P., Feng, X., Grimley, D.A., Leavitt, S.W., Panyushkina, I., Grimm.E., Jeremiah P. Marsicek, J.P., Shuman, B., Curry, B., 2015. Deglacial hydroclimate for midcontinental North America. Quaternary Research 83:336-344, http://dx.doi.org/10.1016/j.yqres.2015.01.001.

Waterhouse, J.S., Switsur, V.R., Barker, A.C., Carter, A.H.C., and Robertson, I., 2002. Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values? Earth and Planetary Science Letters 201: 421-430.

White, J.W.C. 1989.  Stable hydrogen isotope ratios in plants: A review of current theory and some potential applications.  IN Stable Isotopes in Ecological Research, Ecological Studies 68, Rundel, P.W., Ehleringer, J.R. and Nagy, K.A. (eds.), Springer-Verlag, Berlin, pp. 142-162.

White, J.W.C., Cook, E.R., Lawrence, J.R. and Broecker, W.S. 1985.  The D/H ratios of sap in trees: Implications for water sources and tree ring D/H ratios.  Geochim. Cosmochim. Acta 49: 237-246.

White, J.W.C., Lawrence, J.R. and Broecker, W.S. 1994.  Modeling and interpreting D/H ratios in tree rings: A test case of white pine in the northeastern United States.  Geochimica et Cosmochimica Acta 58: 851-862.

Wigley, T.M. L., Gray, B.M. and Kelly, P.M. 1978. Climatic interpretation of δ18O and δD in tree rings. Nature 271: 92-93.  

Wilson, A.T. 1978. Reply to Wigley, T.M. L., Gray, B.M. and Kelly, P.M. 1978. Climatic interpretation of δ18O and δD in tree rings. Nature 271: 93.

Wilson, A.T. and Grinsted, M.J. 1975.  Palaeotemperatures from tree rings and the D/H ratio of cellulose as a biochemical thermometer.  Nature 257: 387-388.

Wilson, A.T. and Grinsted, M.J. 1977. The D/H ratio of cellulose as a biochemical thermometer: a comment on “climatic implications of D/H ratio of hydrogen in C-H groups in tree cellulose” by S. Epstein and C.J. Yapp. Earth Planet. Sci. Lett. 36: 246-248.

Wright, W.E., 2008.  Statistical evidence for exchange of oxygen isotopes in holocellulose during long-term storage.  Chemical Geology 252:102-108.

Wright, W.E. and Leavitt, S.W., 2006.  Boundary layer humidity reconstruction for a semiarid location from tree ring cellulose δ18O. Geophysical Research Letters 111, D18105, doi:10.1029/2005JD006806.

Xu, C., Sano, M., and Nakatsuka, T., 2011. Tree ring cellulose δ18O of Fokienia hodginsii in northern Laos: A promising proxy to reconstruct ENSO?  J. Geophys. Res. 116(D24):D24109.

Xu, C., Sano, M., and Nakatsuka, T., 2013.  A 400-year record of hydroclimate variability and local ENSO history in northern Southeast Asia inferred from tree-ring δ18O.  Palaeogeography, Palaeoclimatology, Palaeoecology 386: 588-598.

 Xu, C., Sano, M., Yoshimura, K., Nakatsuka, T., 2014.  Oxygen isotopes as a valuable tool for measuring annual growth in tropical trees that lack distinct annual rings. Geochemical Journal 48: 371-378.

Xu, C., Zheng, H., Nakatsuka, T., and Sano, M., 2013.  Oxygen isotope signatures preserved in tree-ring cellulose as a proxy for April–September precipitation in Fujian, the subtropical region of southeast China. Journal of Geophysical Research- Atmospheres 118: 12,805-812,815.

Xu, C.X., Shao, X.M., An, W.L., Nakatsuka, T., Zhang, Y., Sano, M., and Guo, Z.T., 2017. Negligible local-factor influences on tree ring cellulose d18O of Qilian juniper in the Animaqing Mountains of the eastern Tibetan Plateau. Tellus B: Chemical and Physical Meteorology 69:1, DOI: 10.1080/16000889.2017.1391663.

Xu, G., Liu, X., Qin, D., Chen, T., An, W., Wang, W., Wu, G., Zeng, X., Ren, J., 2013. Climate warming and increasing atmospheric CO2 have contributed to increased intrinsic water-use efficiency on the northeastern Tibetan Plateau since 1850. Trees–Structure and Function 27:465–475.

Xu, G., Liu, X., Qin, D., Chen, T., Wang, W., Wu, G., Sun,W., An,W., Zeng, X., 2014. Relative humidity reconstruction for northwestern China’s Altay Mountains using tree-ring d18O. Chinese Science Bulletin 59:190–200.

Xu, G. B., Chen, T., Liu, X. H., An, W. L., Wang, W. Z., Yun, H. B., 2011.  Potential Linkages between the moisture variability on the northeastern Qaidam Basin, China Since 1800AD and the East Asian summer monsoon as reflected by tree-ring δ18O.  J. Geophys. Res. 116, D09111, doi:10.1029/2010JD015053.

Yakir, D. 1992.  Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates.  Plant, Cell and Environment 15: 1005-1020.

Yapp, C.J. and Epstein, S. 1977.  Climatic implications of D/H ratios of meteoric water over North America (9500-22,000 B.P.) as inferred from ancient wood cellulose C-H hydrogen.  Earth Planet. Sci. Lett. 34: 333-350.

Yapp, C.J. and Epstein, S. 1982.  Climatic significance of the hydrogen isotope ratios in tree cellulose.  Nature 297: 636-639.

Yapp, C.J., and Epstein, S. 1985. Seasonal contributions to the climatic variations recorded in tree ring deuterium/hydrogen Data. J. Geophys. Res., 90(D2): 3747–3752.

Young, G.H.F., Loader, N.J., McCarroll, D., Bale, R.J., Demmler, J.C., Miles, D., Nayling, N.T., Rinne, K.T., Robertson, I., Watts, C., and Whitney, M., 2015. Oxygen stable isotope ratios from British oak tree-rings provide a strong and consistent record of past changes in summer rainfall. Climate Dynamics 45:3609–3622, doi:10.1007/s00382-015-2559-4.

 

δ13C and δD in Tree Rings

Aucour, A.-M., Tao, F.-X., Sheppard, S.M.F., Huang, N.-W. and Liu, C.Q., 2002.  Climatic and monsoon isotopic signals (δD, δ13C) of northeastern China tree rings. J. Geophys. Res. 107(7): 10.1029/2001JD000464.

Epstein, S. and Krishnamurthy, R.V. 1990.  Environmental information in the isotopic record in trees.  Phil. Trans. R. Soc. Lond. A 330: 427-439.

Friedrich, M., Kromer, B., Spurk, M., Hoffman, J. and Kauser, K.F., 1999.  Paleo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies.  Quaternary International 61: 27-39.

Jedrysek, M.O., Krapiek, M., Skrzypek, G., Kaulzny, A. and Halas, S., 1998.  An attempt to calibrate carbon and hydrogen isotope ratios in oak tree ring cellulose: the last millennium.  Materials and Geoenvironment 45: 82-90.

Krishnamurthy, R.V. and Machavaram, M., 2000. Is there a stable isotope evidence for the CO2 fertilization effect?  Proc. Indian Acad. Sci. (Earth Planet. Sci.) 109(1): 141-144

Lipp, J., Trimborn, P., Fritz, P., Moser, H., Becker, B. and Frenzel, B. 1991.  Stable isotopes in tree ring cellulose and climatic change.  Tellus 43B: 322-330.

Mayr, C., Frenzel, B., Friedrich, M., Spurk, M., Stichler, W. and Trimborn, P. 2003. Stable carbon- and hydrogen-isotope ratios of subfossil oaks in southern Germany: Methodology and application to a composite record for the Holocene.  The Holocene 13: 393-402.

 

δ13C and δ18O in Tree Rings

Anderson, R.L., Byrne, R., Dawson, T., 2008. Stable isotope evidence for a foggy climate on Santa Cruz Island, California at ~16,600 cal. yr. BP.  Palaeogeography, Palaeoclimatology, Palaeoecology 262: 176-181.

Anderson, W.T., Bernasconi, S.M., McKenzie, J.A. and Saurer, M. 1998. Oxygen and carbon isotopic record of climatic variability in tree ring cellulose (Picea abies): an example from central Switzerland (1913-1995). J. of Geophysical Research 103: 31,625-31,636.

Babst, F., Alexander, M.R., Szejner, P., Bouriaud, O., Klesse, S., Roden, J., Ciais, P., Poulter, B., Frank, D., Moore, J.P., and Trouet, V., 2014. A tree-ring perspective on the terrestrial carbon cycle. Oecologia 176(2):307–322.

Barbour, M.M., Walcroft, A.S., Farquhar, G.D., 2002: Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant, Cell and Environment 25: 1483-1499.

Barnard, H.R., Brooks, J.R., and Bond, B.J., 2012. Applying the dual-isotope conceptual model to interpret physiological trends under uncontrolled conditions. Tree Physiology 32(10):1183-1198.

Battipaglia, G., Cherubini, P., Saurer, M., Siegwolf, R.T.W., Strumia, S. and Cotrufo, F.M., 2007. Volcanic explosive eruptions of the Vesuvio decrease tree-ring growth but not photosynthetic rates in the surrounding forests.  Global Change Biology 13:1122–1137.

Battipaglia, G., Saurer, M., Cherubini, P., Calfapietra, C., McCarthy, H.R., Norby, R.J., Cotrufo, and M.F., 2013. Elevated CO2 increases tree-level intrinsic water use efficiency: Insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytologist 197:544–554.

Battipaglia, G., Saurer, M., Cherubini, P., Siegwolf, R.T.W., Cotrufo, M.F., 2009.  Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy. Forest Ecology and Management 257:820-828.

Bégin, C., Gingras, M., Savard, M.M., Marion, J., Nicault, A., and Bégin, Y., 2015. Assessing tree ring carbon and oxygen stable isotopes for climate reconstruction in the Canadian northeastern boreal forest. Palaeogeography, Palaeoclimatology, Palaeoecology 423:91-101.

Boettger, T., and Friedrich, M., 2009.  A new serial pooling method of shifted tree ring blocks to construct millennia long tree ring isotope chronologies with annual resolution. Isotopes in Environmental and Health Studies 45(1): 68–80.

Brooks, R.J., and Coulombe, R., 2009. Physiological responses to fertilization recorded in tree rings: Isotopic lessons from a long-term fertilization trial.  Ecological Applications 19(4):1044–1060.

Brooks, J.R., Mitchell, A.K., 2011.  Interpreting tree responses to thinning and fertilization using tree-ring stable isotopes.  New Phytologist 190(3): 770-82.

Cullen, L.E., and Grierson, P.F., 2007. A stable oxygen, but not carbon, isotope chronology of Callitris columellaris reflects recent climate change in north-western Australia. Climatic Change 85(1-2):213-229.

Danis, P.-A., Hatté, C., Misson, L., and Guiot, J., 2012.  MAIDENiso: a multiproxy biophysical model of tree-ring width and oxygen and carbon isotopes. Canadian Journal of Forest Research 42(9):1697-1713, https://doi.org/10.1139/x2012-089.

Danis, P.A., Masson-Delmotte, V., Stievenard, M., Guillemin, M.T., Daux, V., Naveau, P., Grafenstein, U.V., 2006. Reconstruction of past precipitation δ18O using tree-ring cellulose δ18O and δ13C: A calibration study near Lac d'Annecy, France. Earth and Planetary Science Letters 243: 439–448.

Daux, V., Edouard, J.L., Masson-Delmotte, V., Stievenard, M., Hoffmann, G., Pierre, M., Mestre, O., Danis, P.A., and Guibal, F., 2011.  Can climate variations be inferred from tree-ring parameters and stable isotopes from Larix decidua? Juvenile effects, budmoth outbreaks, and divergence issue.  Earth and Planetary Science Letters 309(3-4): 221–233.

Dorado Lińán, I., Gutiérrez, E., Helle, G., Heinrich, I., Andreu-Hayles, L., Planells, O., Leuenberger, M., Bürger, C., Schleser, G., 2011. Pooled versus separate measurements of tree-ring stable isotopes, Science of The Total Environment 11: 2244-2251, doi:10.1016/j.scitotenv.2011.02.010.

Edwards, T.W.D., Birks, S.J., Luckman, B.H. and MacDonald, G.M., 2008. Climatic and hydrologic variability during the past millennium in the eastern Rocky Mountains and northern Great Plains of western Canada. In Press.

Edwards, T.W.D., Hammarlund, D., Newton, B.W., Sjolte, J., Linderson, H., Sturm, C., St. Amour, N.A., Bailey, J.N.-L., Nilsson, A.L., 2017. Seasonal variability in Northern Hemisphere atmospheric circulation during the Medieval Climate Anomaly and the Little Ice Age.  Quaternary Science Reviews 165:102-110.

English, N.B., McDowell, N.G., Allen, C.D., and Mora, C., 2011. The effects of α-cellulose extraction and blue-stain fungus on retrospective studies of carbon and oxygen isotope variation in live and dead trees.  Rapid Communications in Mass Spectrometry 25: 3083-3090.

Esper, J., Frank, D.C., Battipaglia, G., Büntgen, U., Holert, C., Treydte, K., Siegwolf, R. and Saurer, M., 2010.  Low-frequency noise in δ13C and δ18O tree ring data: A case study of Pinus uncinata in the Spanish Pyrenees. Global Biogeochem. Cycles 24, GB4018, doi:10.1029/2010GB003772.

Esper, J., Holzkämper, S., Büntgen, U., Schöne, B., Keppler, F., Hartl, C., St. George, S., Riechelmann, D.F., and Treydte, K., 2018.  Site-specific climatic signals in stable isotope records from Swedish pine forests. Trees 32:1–15.

Etien, N., Daux, V., Masson-Delmotte, V., Stievenard, M., Bernard, V., Durost, S., Guillemin, M.T.,  Mestre, O., Pierre, M., 2008.  A bi-proxy reconstruction of Fontainebleau (France) growing season temperature from AD 1596 to 2000. Climate of the Past 4: 91-106.

Ferrio, J. P. and Voltas, J., 2005.  Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit.  Tellus B 57: 164-173.

Fu, P.-L., Grießinger, J., Gebrekirstos, A., Fan, Z.-X., Bräuning, A., 2017. Earlywood and latewood stable carbon and oxygen isotope variations in two pine species in southwestern China during the recent decades. Frontiers in Plant Science 7: 2050, DOI=10.3389/fpls.2016.02050.

Gessler, A., Brandes, E., Buchmann, N., Helle, G., Rennenberg, H. and Barnard, R.L., 2009. Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive. Plant Cell and Environment 32: 780-795.

Gessler, A., Ferrio, J.P., Hommel, R., Treydte, K., Werner, R.A., and Monson, R.K., 2014. Stable isotopes in tree rings: Towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiology 34:796-818.

Giammarchi, F., Cherubini, P., Pretzsch, H., Tonon, G., 2017. The increase of atmospheric CO2 affects growth potential and intrinsic water-use efficiency of Norway spruce forests: Insights from a multi-stable isotope analysis in tree rings of two Alpine chronosequences. Trees–Structure and Function 31:503–515.

Giuggiola, A., Ogée, J., Rigling, A., Gessler, A., Bugmann, H., and Treydte, K., 2016. Improvement of water and light availability after thinning at a xeric site: Which matters more? A dual isotope approach. New Phytologist 210(1):108-121, doi: 10.1111/nph.13748.

Gómez-Guerrero, A., Silva, L.C., Barrera-Reyes, M., Kishchuk, B., Velázquez-Martínez, A., Martínez-Trinidad, T., Plascencia-Escalante, F.O., and Horwath, W.R., 2013.  Growth decline and divergent tree ring isotopic composition (δ13C and δ18O) contradict predictions of CO2 stimulation in high altitudinal forests.  Global Change Biology 19(6):1748-1758.

Guerrieri, R., Mencuccini, M., Sheppard, L.J., Saurer, M., Perks, M., Levy, P., Sutton, M.A., Borghetti, M., and Grace, J., 2011. The legacy of enhanced N and S deposition as revealed by the combined analysis of δ13C, δ18O and δ15N in tree rings. Global Change and Biology 17:1946-1962.

Haupt, M., Weigl, M., Grabner, M., and Boettger, T. 2011. A 400-year reconstruction of July relative air humidity for the Vienna region (eastern Austria) based on carbon and oxygen stable isotope ratios in tree-ring latewood cellulose of oaks (Quercus petraea Matt. Liebl.). Climatic Change 105:243-262. doi: 10.1007/s10584-010-9862-1.

Hilasvuori, E., Berninger, F., Sonninen, E., Tuomenvirta, H., and Jungner H., 2009. Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland. Journal of Quaternary Sci. 24: 469-480.

Horacek, M., Jakusch, M., and Krehan, H., 2009. Control of origin of larch wood: Discrimination between European (Austrian) and Siberian origin by stable isotope analysis. Rapid Communications in Mass Spectrometry 23: 3688-3692.

Huang, Z., Liu, B., Davis, M., Sardans, J., Peńuelas, J., and Billings, S., 2016. Long-term nitrogen deposition linked to reduced water use efficiency in forests with low phosphorus availability. New Phytologist 210:431-442, doi:10.1111/nph.13785.

Jennings, K., Guerrieri, R., Vadeboncoeur, M., and Asbjornsen, H., 2016. Response of Quercus velutina growth and water use efficiency to climate variability and nitrogen fertilization in a temperate deciduous forest in the northeastern U.S. Tree Physiology 36(4):428-443.

Hunter, R.D., Panyushkina, I.P., Leavitt, S.W., Wiedenhoeft, A.C. and Zawiskie, J., 2006. A multiproxy environmental investigation of Holocene wood from a submerged conifer forest in Lake Huron, USA. Quaternary Research 66: 67-77.

Kilroy, E., McCarroll, D., Young, G.H.F., Loader, N.J., and Bale, R., 2016. Absence of juvenile  effects confirmed in stable carbon and oxygen isotopes of European larch trees. Acta Silvae Ligni 111:27–33.

Knorre, A.A., Siegwolf, R.T.W., Saurer, M., Sidorova, O.V., Vaganov, E.A. and Kirdyanov, A.V., 2010. Twentieth century trends in tree ring stable isotopes (δ13C and δ18O) of Larix siberica  under dry conditions in the forest steppe in Siberia. Journal of Geophysical Research-Biogeosciences 115, G03002, doi:10.1029/2009JG000930.

Kremenetski, K., Boettger, T., MacDonald, G., Vaschalova, T., Sulerzhitsky, L., Hiller, A., 2004. Mediaeval climate warming and aridity as indicated by multiproxy evidence from the Kola Peninsula, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 209: 113-125.

Kress, A., Saurer, M., Siegwolf, R. T. W., Frank, D. C., Esper, J., and Bugmann, H., 2010.  A 350 year drought reconstruction from Alpine tree ring stable isotopes. Global Biogeochem. Cycles 24: GB2011, doi:10.1029/2009GB003613.

Leavitt, S.W., Treydte, K., and Yu, L., 2010.  Environment in time and space: Opportunities from tree-ring isotope networks. IN Understanding Movement, Pattern, and Processes on Earth Through Isotope Mapping, West, J.B.; Bowen, G.J.; Dawson, T.E.; Tu, K.P. (eds.), Ch. 6, Springer, Dordrecht, pp. 113-135.

Leonelli, G., Battipaglia, G., Siegwolf, R.T.W., Saurer, M., Morra di Cella, U., Cherubini, P., Pelfini, M., 2012. Climatic isotope signals in tree rings masked by air pollution: A case study conducted along the Mont Blanc Tunnel access road (Western Alps, Italy). Atmospheric Environment 61:169-179.

Lévesque, M., Siegwolf, R., Saurer, M., Eilmann, B., and Rigling, A., 2014. Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytologist 203:94-109, doi:10.1111/nph.12772.

Li, Z.-H., Labbé, N., Driese, S.G., Grissino-Mayer, H.D., 2011.  Micro-scale analysis of tree-ring δ18O and δ13C on α-cellulose spline reveals high-resolution intra-annual climate variability and tropical cyclone activity.  Chemical Geology 284:138 – 147.

Liu, X., An, W., Leavitt, S.W., Wang, W., Xu, G., Zeng, X., and Qin, D., 2014. Recent strengthening of correlations between tree-ring δ13C and δ18O in mesic western China: Implications to climatic reconstruction and physiological responses.  Global and Planetary Change 113:23–33.

Liu, X., Wang, W., Xu, G., Zeng, X., Wu, G., Zhang, X., and Qin D., 2014. Tree growth and intrinsic water-use efficiency of inland riparian forests in northwestern China: Evaluation via δ13C and δ18O analysis of tree rings. Tree Physiology 34(9): 966-980, doi: 10.1093/treephys/tpu067.980.

Liu, X., Zhang, X., Zhao, L., Xu, G., Wang, L., Sun, W., Zhang, Q., Wang, W., Zeng, X., Wu, G., 2017. Tree ring δ18O reveals no long-term change of atmospheric water demand since 1800 in the northern Great Hinggan Mountains, China. Journal of Geophysical ResearchAtmospheres 122:6697–6712.

Loader, N. J., Helle, G., Los, S., Lehmkuhl, F., and Schleser, G. H., 2010.  Twentieth century summer temperature variability in the southern Altai Mountains: A carbon and oxygen isotope study of tree rings. Holocene, doi: 274 10.1177/0959683610369507.

Loader, N.J., Young, G.H., McCarroll, D., and Wilson, R.J., 2013. Quantifying uncertainty in isotope dendroclimatology. The Holocene 23:1221–1226. doi:10.1177/0959683613486945.

Marias, D.E., Meinzer, F.C., Woodruff, D.R., Shaw, D.C., Voelker, S.L., Brooks, J.R., Lachenbruch, B., Falk, K., and McKay, J., 2014.  Impacts of dwarf mistletoe on the physiology of host Tsuga heterophylla trees as recorded in tree-ring C and O stable isotopes. Tree Physiology 34(6):595-607.

Masson-Delmotte, V., G. Rafalli-Delerce, P. A. Danis, P. Yiou, M. Stievenard, F. Guibal, O. Mestre, V. Bernard, H. Goose, G. Hoffmann and J. Jouzel, 2005.  Changes in European precipitation seasonality and in drought frequencies revealed by a four-century long tree-ring isotopic record from Brittany, France. Climate Dynamics 24: 57-69.

Moreno-Gutiérrez, C., Dawson, T. E., Nicolás, E., and Querejete, J.I., 2012. Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytologist 196:489-496.

Nakatsuka, T., Ohnishi, K., Hara, T., Sumida, A., Mitsuishi, D., Kurita, N. and Uemura, S., 2004. Oxygen and carbon isotopic ratios of tree-ring cellulose in a conifer-hardwood mixed forest in northern Japan. Geochemical Journal 38(1):77–88.

Nock, C. A., Baker, P. J., Wanek, W., Leis, A., Grabner, M., Bunyavejchewin, S. and Hietz, P., 2010. Long-term increases in intrinsic water-use efficiency do not lead to increased stem growth in a tropical monsoon forest in western Thailand.  Global Change Biology no. doi: 10.1111/j.1365-2486.2010.02222.x

Offermann, C., Ferrio, J.P., Holst, J., Grote, R., Siegwolf, R., Kayler, Z., Gessler, A., 2011.  The long way down--are carbon and oxygen isotope signals in the tree ring uncoupled from canopy physiological processes?  Tree Physiology 31(10): 1088-102.

Ogee, J., Barbour, M.M., Wingate, L., Bert, D., Bosc, A., Stievenard, M., Lambrot, C., Pierre, M., Bariac, T., Loustau, D. and Dewar, R.C., 2009.  A single substrate model to interpret intra-annual stable isotope signals in tree-ring cellulose.  Plant, Cell and Environment 32: 1071-1090.

Panyushkina, I.P., Leavitt, S.W., Thompson, T.A., Schneider, A.F. and Lange, T., 2008. Environment and paleoecology of a 12 ka mid-North American Younger Dryas forest chronicled in tree rings. Quaternary Research 70: 433-441.

Planells, O., Gutiérrez, E., Helle, G., and Schleser, G., 2009. A forced response to twentieth century climate conditions of two Spanish forests inferred from widths and stable isotopes of tree rings. Climatic Change 97:229–252.

Pons, T.L. and Helle, G., 2011. Identification of anatomically non-distinct annual rings in tropical trees using stable isotopes. Trees-Structure and Function 25: 83-93.

Porter, T.J., Pisaric, M.F.J., Kokelj, S.V., Edwards, T.W.D., 2009.  Climatic signals in δ13C and δ18O of tree-rings from white spruce in the Mackenzie Delta Region, northern Canada.  Arctic, Antarctic and Alpine Research 41: 497-505.

Poussart, P.F., M.N. Evans and D.P. Schrag, 2004. Resolving seasonality in tropical trees: multi-decade, high-resolution oxygen and carbon isotopic records from Indonesia and Thailand, Earth and Planetary Science Letters, 218: 301-316.

Poussart, P.F. and Schrag, D.P., 2005.  Seasonally resolved stable isotope chronologies from northern Thailand deciduous trees. Earth and Planetary Science Letters, 235: 752-765.

Powers, M.D., Pregitzer, K.S., Palik, B.J., Webster, C.R., 2010.  Wood δ13C, δ18O and radial growth responses of residual red pine to variable retention harvesting. Tree Physiology 30(3):326-334.

Raffalli-Delerce, G., Masson-Delmotte, V., Dupouey, J. L., Stievenard, M., Breda, N. and Moisselin, J. M., 2004.  Reconstruction of summer droughts using tree-ring cellulose isotopes: a calibration study with living oaks from Brittany (western France). Tellus B 56: 160-174.

Reynolds-Henne, C. E., Siegwolf, R. T. W., Treydte, K. S., Esper, J., Henne, S. And Saurer, M., 2007. Temporal stability of climate-isotope relationships in tree rings of oak and pine (Ticino, Switzerland). Global Biogeochemical Cycles 21, GB4009, doi:10.1029/2007GB002945.

Rinne, K.T., Loader, N.J., Switsur, V.R., Treydte, K.S., and Waterhouse, J.S., 2010.  Investigating the influence of sulpher dioxide (SO2) on the stable isotope ratios (δ13C and δ18O) of tree rings. Geochim. Cosmochim. Acta 74: 2327-2339.

Roden, J., 2008.  Cross-dating of tree ring δ18O and δ13C time series.  Chemical Geology 252:72-79.

Roden, J.S., Bowling, D.R., McDowell, N.G., Bond, B.J., and Ehleringer, J.R., 2005. Carbon and oxygen isotope ratios of tree ring cellulose along a precipitation transect in Oregon, United States. J. Geophys. Res. 110, G02003, doi:10.1029/2005JG000033.

Roden, J.S., and Ehleringer, J.R., 2007. The effect of summer precipitation on the stable oxygen and carbon isotopic composition of tree ring cellulose in Pinus ponderosa. Tree Physiology 27: 491-501.

Roden, J.S., and Farquhar, G.D., 2012.  A controlled test of the dual-isotope approach for the interpretation of stable carbon and oxygen isotope ratio variation in tree rings. Tree Physiology 32:490-503.

Roden, J.S., Johnstone, J.A., and Dawson, and T.E., 2009.  Intra-annual variation in the stable oxygen and carbon isotope ratios of cellulose in tree rings of coast redwood (Sequoia sempervirens). The Holocene 19: 189-197.

Roden, J.S., Johnstone, J.A., Dawson, T.E., 2011.  Regional and watershed-scale coherence in the stable-oxygen and carbon isotope ratio time series in tree rings of coast redwood (Sequoia sempervirens). Tree-Ring Research 67(2):71-86.

Roden, J., and Siegwolf, R. 2012.  Is the dual-isotope conceptual model fully operational? Tree Physiology 32:1179-1182.

Rossi, L., Sebastiani, L., Tognetti, R., d’Andria, R., Morelli, G., and Cherubini, P., 2013.  Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability. Plant and Soil 372:567–579, 10.1007/s11104-013-1759-0.

Saffell, B.J., Meinzer, F.C., Voelker, S.L., Shaw, D.C., Brooks, J.R., Lachenbruch, B., and McKay, J., 2014.  Tree-ring stable isotopes record the impact of a foliar fungal pathogen on CO2 assimilation and growth in Douglas-fir. Plant, Cell and Environment 37(7):1536-47.

 

Sarris, D., Siegwolf, R., and Körner, C., 2013.  Inter- and intra-annual stable carbon and oxygen isotope signals in response to drought in Mediterranean pines. Agricultural and Forest Meteorology 168:59-68.

Saurer, M., Aellen, K., and Siegwolf, R. 1997. Correlating δ13C and δ18O in cellulose of trees. Plant, Cell and Environment 20: 1543-1550.

Saurer, M., Cherubini, P., Reynolds-Henne, C.E., Treydte, K.S., Anderson, W.T. and Siegwolf, R.T.W., 2008. An investigation of the common signal in tree ring stable isotope chronologies at temperate sites.  J. Geophys. Res. 113: G04035, doi:10.1029/2008JG000689.

Saurer, M., Siegwolf, R.T.W., 2007. Human impacts on tree-ring growth reconstructed from stable isotopes.  In Stable Isotopes as Indicators of Ecological Change, Dawson,T.E., Siegwolf, R.T.W. (eds.),  Terrestrial Ecology, Vol. 1, pp. 49-62, Elsevier.

Scheidegger, Y., Saurer, M., Bahn,  M. and  Siegwolf, R., 2000. Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: A conceptual model. Oecologia 125: 350–357.

Schollaen, K., Heinrich, I., and Helle, G., 2014.  UV-laser-based microscopic dissection of tree rings - a novel sampling tool for δ13C and δ18O studies. New Phytolologist 201(3):1045-55.

Schollaen, K., Heinrich, I., Neuwirth, B., Krusic, P.J., D'Arrigo, R.D., Karyanto, O., and Helle, G., 2013.  Multiple tree-ring chronologies (ring width, δ13C and δ18O) reveal dry and rainy season signals of rainfall in Indonesia. Quaternary Science Reviews 73:170-181.

Seftigen, K., Linderholm, H.W., Loader, N.J., Liu, Y. and Young, G.H.F., 2011. The influence of climate on 13C/12C and 18O/16O ratios in tree ring cellulose of Pinus sylvestris L. growing in the central Scandinavian mountains. Chemical Geology 286: 84–93.

Shestakova, T.A., Aguilera, M., Ferrio, J.P., Gutiérrez, E., and Voltas, J., 2014.  Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios. Tree Physiology 34(8):819-838.

Sidorova, O.V., Saurer, M., Myglan, V.S., Eichler, A., Schwikowski, M., Kirdyanov, A.V., Bryukhanova, M.V., Gerasimova, O.V., Kalugin, I.A., Daryin, A.V., and Siegwolf, R.T.W., 2010. A multi-proxy approach for revealing recent climatic changes in the Russian Altai.  Climate Dynamics 38 (1-2):175-188. doi: 10.1007/s00382-010-0989-6.

Sidorova O.V., Siegwolf, R.T.W., Saurer, M., Naurzbaev, and M.M., Vaganov, E.A., 2008. Isotopic composition (δ13C, δ18O) in wood and cellulose of Siberian larch trees for early Medieval and recent periods, J. Geophys. Res. (Biogeosciences) 113, G02019, doi:10.1029/2007JG000473.

Sidorova, O.V., Siegwolf, R.T.W., Saurer, M., Shashkin, A.V., Knorre, A.A., Prokushkin, A.S., Vaganov, E.A., and Kirdyanov, A.V., 2009. Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) indicate increasing water shortage in the Siberian north? Oecologia 161: 825-835.

Sidorova, O.V., Siegwolf, R.T.W., Saurer, M., Naurzbaev, M.M., Shashkin, A.V., and Vaganov, E.A., 2010.  Spatial patterns of climate changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Global Change Biology 16:1003-1018.

Simard, S., Elhani, S., Morin, H., Krause, C. and Cherubini, P., 2008.  Carbon and oxygen stable isotopes from tree-rings to identify spruce budworm outbreaks in the boreal forest of Québec.  Chemical Geology 252:80-87.

Szejner, P., Wright, W.E., Babst, F., Belmecheri, S., Trouet, V., Leavitt, S.W., Ehleringer, J.R., Monson, R.K., 2016.  Latitudinal gradients in tree-ring stable carbon and oxygen isotopes reveal differential climate influences of the North American Monsoon System. Journal of Geophysical Research: Biogeosciences 121(7):1978-1991. doi: 10.1002/2016JG003460.

Szymczak, S., Joachimski M.M., Bräuning A., Hetzer T., Kuhlemann J., 2011.  Comparison of whole wood and cellulose carbon and oxygen isotope series from Pinus nigra ssp. laricio (Corsica/France).  Dendrochronologia 29(4):219-226.

Szymczak, S., Joachimski M.M., Bräuning A., Hetzer T., Kuhlemann J., 2012. Are pooled tree ring δ13C and δ18O series reliable climate archives? —A case study of Pinus nigra spp. laricio (Corsica/France). Chemical Geology 308/309:40-49.

Szymczak, S., Joachimski M.M., Bräuning A., Hetzer T., Kuhlemann J., 2012. A 560 yr summer temperature reconstruction for the Western Mediterranean basin based on stable carbon isotopes from Pinus nigra ssp. laricio (Corsica/France).  Climates of the Past 8:1737-1749.

Tognetti, R., Lombardi, F., Lasserre, B., Cherubini, P., Marchetti, M., 2014. Tree-ring stable isotopes reveal twentieth-century increases in water-use efficiency of Fagus sylvatica and Nothofagus spp. in Italian and Chilean mountains. PLoS ONE 9(11): e113136.

Treydte, K., Esper, J. and Gärtner, H., 2004. Stabile Isotope in der Dendroklimatologie. Schweizerische Zeitschrift für Forstwesen 155: 222-232.

Verheyden, A., Helle, G., Schleser, G.H., Dehairs, F., Beeckman, H. and Koedam, N., 2004. Annual cyclicity in high-resolution stable carbon and oxygen isotope ratios in the wood of the mangrove tree Rhizophora mucronata. Plant, Cell and Environment 27:1525–1536.

Voltas, J., Camarero, J.J., Carulla, D., Aguilera, M., Ortiz, A., and Ferrio, J.P., 2013.  A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine. Plant, Cell and Environment 36:1435-1448.

Voltas, J., Chambel, M., Prada, M., Ferrio, J., 2008. Climate‐related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common‐garden tests. Trees – Structure and Function 22:759–769.

Wagner, R. and Wagner, E., 2006. Influence of air pollution and site conditions on trends of carbon and oxygen isotope ratios in tree ring cellulose. Isotopes in Environmental and Health Studies 42(4):  351–365.

Walker, X.J., Mack, M.C., and Johnstone, J.F., 2015. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests. Global Change Biology 21(8):3102-3113.

Ward, J.K., Harris, J.M., Cerling, T.E., Wiedenhoeft, A., Lott, M.J., Dearing, M.D., Coltrain, J.B. and Ehleringer, J.R., 2005. Carbon starvation in glacial trees recovered from the La Brea tar pits, southern California. Proceedings of The National Academy of Sciences 102: 690-694.

Wang, W., Liu, X., Xu, G., Treydte, K., Shao, X., Qin, D., Wang, G., and McDowell, N.G., 2019. CO2 fertilization confounds tree‐ring records of regional hydroclimate at northeastern Qinghai‐Tibetan Plateau. Earth and Space Science 6: 730–740, https://doi.org/10.1029/2018EA000529.

Ward, J.K., Harris, J.M., Cerling, T.E., Wiedenhoeft, A., Lott, M.J., Dearing, M.D., Coltrain, J.B. and Ehleringer, J.R., 2005. Carbon starvation in glacial trees recovered from the La Brea tar pits, southern California. Proceedings of The National Academy of Sciences 102: 690-694.

Weidner, K., Heinrich, I., Helle, G., Löffler, J., Neuwirth, B., Schleser, G.H., and Vos, H., 2010.  Consequences of larch budmoth outbreaks on the climatic significance of ring width and stable isotopes of larch.  Trees- Structure and Function 24:399-409.

Weigl, M., Grabner, M., Helle, G., Schleser, G.H., and Wimmer, R., 2007.  Variability of latewood-widths and -stable isotope ratios in a sessile oak tree (Quercus petraea (Matt.) Liebl.). Dendrochronologia 24(2-3):117-122  

Weigl, M., Grabner, M., Helle, G., Schleser, G.H., and Wimmer, R., 2008.  Characteristics of radial growth and stable isotopes in a single oak tree to be used in climate studies.  Science of the Total Environment 393(1):154-161

Weigt, R.B., Bräunlich, S., Zimmermann, L., Saurer, M., Grams, T.E., Dietrich, H.P., Siegwolf, R.T., and Nikolova, P.S., 2015. Comparison of δ13C and δ18O values between tree-ring whole wood and cellulose in five species growing under two different site conditions. Rapid Commun. Mass Spectrom. 29(23):2233-44.

Yakir, D., Issar, A., Gat, J., Adar, E., Trimborn, P., and Lipp, J. 1994. 13C and 18O of wood from the Roman siege rampart in Masada, Israel (AD 70-73): Evidence for a less arid climate for the region. Geochim. Cosmochim. Acta 58:3535-3539.

Young, G.H.F., Demmler, J.C., Gunnarson, B.E., Kirchhefer, A.J., Loader, N.J., and McCarroll, D., 2011. Age trends in tree ring growth and isotopic archives: A case study of Pinus sylvestris L. from northwestern Norway. Global Biogeochemical Cycles 25:1–6. doi:10.1029/2010GB003913.

van der Sleen, P., Groenendijk, P., and Zuidema, P.A., 2015. Tree-ring δ18O in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions. Global and Planetary Change 127:58-66.

δD, δ13C and δ18O in Tree Rings

Boettger, T., Haupt, M., Friedrich, M., Waterhouse, J.S., 2014.  Reduced climate sensitivity of carbon, oxygen and hydrogen stable isotope ratios in tree-ring cellulose of silver fir (Abies alba Mill.) influenced by background SO2 in Franconia (Germany, Central Europe).  Environmental Pollution 185:281-94.

Dodd, J.P., Patterson, W.P., Holmden, C. and Brasseur, J.M., 2008.  Robotic micromilling of tree-rings: A new tool for obtaining subseasonal environmental isotope records.  Chemical Geology 252:21-30.

Gori, Y., Wehrens, R., Greule, M., Keppler, F., Ziller, L., La Porta, N., and Camin, F., 2013. Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxyl groups of Picea abies as climate proxies. Rapid Communication Mass Spectrometry 27:265-275.

Hangartner, S, Kress, A., Saurer, M. Frank, D., and Leuenberger, M., 2010.  Methods to merge overlapping tree-ring isotope series to generate multi-centennial chronologies.  Chemical Geology 294–295:127–134.

Hilasvuori, E., and Berninger, F., 2010. Dependence of tree ring stable isotope abundances and ring width on climate in Finnish oak. Tree Physiology 30:636–647. doi:10.1093/treephys/tpq019.

Etien, N., Daux, V., Masson-Delmotte, V., Mestre, O., Stievenard, M., Guillemin, M.T., Boettger, T., Breda, N., Haupt, M., and Perraud, P.P., 2009.  Summer maximum temperature in northern France over the past century: Instrumental data versus multiple proxies (tree-ring isotopes, grape harvest dates and forest fires).  Climatic Change 94: 429-456.

Leavitt, S.W., Panyushkina, I.P., Lange, T., Wiedenhoeft, A., Cheng, L., Hunter, R.D., Hughes, J., Pranschke, F., Schneider, A.F., Moran, J. and Stieglitz, R., 2006. Climate in the Great Lakes region between 14,000 and 4,000 years ago from isotopic composition of conifer wood. Radiocarbon 48: 205-217.

Libby, L.M. and Pandolfi, L.J. 1974. Temperature dependence of isotope ratios in tree-rings. Proc. Nat. Acad. Sci. 71: 2482-2486.

Libby, L.M. and Pandolfi, L.J. 1979. Tree thermometers and commodities: historic climate indicators. Environment International 2: 317-333.

Loader, N.J., McCarroll, D., Gagen, M., Robertson, I., Jalkanen, R., 2007. Extracting climatic information from stable isotopes in tree rings. In: Dawson, T.D. and Siegwolf, R. (Eds.), Stable Isotopes as Indicators of Ecological Change. Academic Press, London.

Loader, N.J., Santillo, P.M., Woodman-Ralph, J.P., Rolfe, J.E., Hall, M.A., Gagen, M., Robertson, I., Wilson, R., Froyd, C.A. and McCarroll, D., 2008.  Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions.  Chemical Geology 252:62-71.

Mischel, M., Esper, J., Keppler, F., Greule, M., and Werner, W., 2015.  δ˛H, δąłC and δą⁸O from whole wood, α-cellulose and lignin methoxyl groups in Pinus sylvestris: A multi-parameter approach. Isotopes Environ. Health Stud. 51(4):553-68.

Robertson, I., Field, E.M., Heaton, T.H.E., Pilcher, J.R., Pollard, M., Switsur, R. and Waterhouse, J.S. 1995. Isotope coherence in oak cellulose. IN: Problems of stable isotopes in tree-rings, lake sediments and peat-bogs as climatic evidence for the Holocene, B. Frenzel, B. Stauffer and M.M. Weib (eds.). – Stuttgart, Vienna, NY, G. Fischer, pp. 141-155.

Switsur  V.R., and  Waterhouse, J.S., 1998. Stable isotopes in tree ring cellulose.  In: Stable Isotopes: The Integration of Biological, Ecological and Geochemical Processes, edited by Griffiths, H., pp. 303–321. Bios Scientific Publishing, Oxford, UK.

Switsur, V.R., Waterhouse, J.S., Field, E.M. and Carter, A.H. 1996. Climatic signal from stable isotopes in oak tree rings from East Anglia, Great Britain. IN: Tree Rings, Environment and Humanity, J.S. Dean, D.M. Meko and T.W. Swetnam, (eds.), pp. 637-645, Radiocarbon, Tucson.

Szczepanek, M., Pazdur, A., Pawelczyk, S., Bottger, T., Haupt, M., Halas, S., Bednarz, Z., Krapiec, M. and  Szychowska-Krapiec, E., 2006. Hydrogen, carbon and oxygen isotopes in pine and oak tree rings from Southern Poland as climatic indicators in years 1900-200.  Geochronometria 25: 67-76.

Werner, C., Schnyder, H., Cuntz, M., Keitel, C., Zeeman, M.J., Dawson, T.E., Badeck, F.-W., Brugnoli, E., Ghashghaie, J., Grams, T.E.E., Kayler, Z.E., Lakatos, M., Lee, X., Maguas, C., Ogee, J., Rascher, K.G., Siegwolf, R.T.W., Unger, S., Welker, J., Wingate, L., and Gessler, A., 2012. Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences 9:3083–3111.

Wilson, A.T. and Grinsted, M.J. 1978. The possibilities of deriving past climate information from stable isotopes on tree rings. Stable Isotopes in Earth Science. DSIR Bull. 220: 61-66.

 

δ13C in Tree Rings

Ackroyd, R.G., Lucy, D., Pollard, A.M., Carter, A.H.C. and Robertson, I., 2001.  Temporal variability in the strength of proxy-climate correlations.  Geophys. Res. Lett. 28: 1559-1562.

Anderson, W.T., Sternberg, L.S.L., Pinzon, M.C., Gann-Troxler, T., Childers, D.L., and Duever, M., 2006. Carbon isotopic composition of cypress trees from South Florida and changing hydrologic conditions.  Dendrochronologia 23:1-10.

Andreu, L., Planells, O., Gutiérrez, E., Helle, G., Schleser, G.H., 2008. Climatic significance of tree-ring width and δ13C in a Spanish pine forest network. Tellus B 60:771-781, doi:10.1111/j.1600-0889.2008.00370.x.

Andreu-Hayles, L., Planells, O., Cardenas Gutierrez, E., Muntán, E., Helle, G., Anchukaitis, K.J., Schleser, G.H., 2011. Long tree‐ring chronologies reveal 20th century increases in water‐use efficiency but no enhancement of tree growth at five Iberian pine forests. Global Change Biology 17(6):2095-2112.

Arneth, A., Lloyd, J., Šantrůčková, H., Bird, M., Grigoryev, S., Kalaschnikov, Y.N., Gleixner, G. and Schulze, E.-D., 2002.  Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2 concentration. Global Biogeochemical Cycles 16(1): 1005, doi:10.1029/2000GB001374.

Badeck, F.-W., Tcherkez, G., Nogués, S., Piel, C., Ghashghaie, J., 2005. Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon.  Rapid Communications in Mass Spectrometry 19: 1381–1391.

Barber, V.A., Juday, G.P. and Finney, B.P., 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress.  Nature 405: 668-673.

Barber, V.A., Juday, G.P., Finney, B.P. and Wilmking, M., 2004. Reconstruction of summer temperatures in interior Alaska from tree-ring proxies: Evidence for changing synoptic climate regimes. Climatic Change 63: 91-120.

Battipaglia, G., De Micco, V., Brand, W.A., Linke, P., Aronne, G., Saurer, M.and Cherubini, P., 2010. Variations of vessel diameter and δ13C in false rings of Arbutus unedo L. reflect different environmental conditions. New Phytologist 188: 1099-1112.

Battipaglia, G., Marzaioli, F., Lubritto, C., Altieri, S., Strumia, S., Cherubini, P., Cotrufo, M.F., 2010.  Traffic pollution affects tree-ring width and isotopic composition of Pinus pinea. Science of The Total Environment 408(3):586-593.

Becker, B., Kromer, B., and Trimborn, P. 1991. A stable–isotope tree-ring timescale of the late Glacial-Holocene boundary. Nature 353: 647-649.

Belmecheri, S., Maxwell, R.S., Taylor, A.H., Davis, K.J., Freeman, K.H., and Munger, W.J., 2014. Tree-ring δ13C tracks flux tower ecosystem productivity estimates in a NE temperate forest.  Environmental Research Letters 9, doi:10.1088/1748-9326/9/7/074011.

Bender, M.M. and Berge, A.J. 1982. Carbon isotope records in Wisconsin trees. Tellus 34: 500-504.

Benner, R., Fogel, M.L., Sprague, E.K. and Hodson, R.E. 1987. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329: 368-710.

Bert, D., Leavitt, S.W. and Dupouey, J.-L. 1997.  Variations of wood δ13C and water-use efficiency of Abies alba during the last century.  Ecology 78: 1588-1596.

Berninger, F., Sonninen, E., Aalto, T. and Lloyd, J.  2000.  Modeling 13C discrimination in tree rings. Global Biogeochemical Cycles 14: 213-223.

Boakye, E.A., Gebrekirstos, A., Hyppolite, D.N., Barnes, V.R., Porembski, S., Bräuning, A., 2019. Carbon Isotopes of riparian forests trees in the savannas of the Volta Sub-Basin of Ghana reveal contrasting responses to climatic and environmental variations. Forests 10: 251, https://doi.org/10.3390/f10030251.

Brendel, O. 2001.  Does bulk-needle δ13C reflect short-term discrimination?  Ann. For. Sci. 58: 135-141.

 

Brendel, O., Handley, L. and Griffiths, H., 2003.  The δ13C of Scots pine (Pinus sylvestris L.) needles: spatial and temporal variations. Ann. Forest Sci. 60: 97-104.

Brendel, O., Pot, D., Plomion, C., Rozenberg, P. and Guehl, J.-M., 2002.  Genetic parameters and QTL analysis of δ13C and ring width in maritime pine.  Plant, Cell  Environ. 25: 945-953.

Brienen, R. J. W., Gloor, E., Clerici, S., Newton, R., Arppe, L., Boom, A., Bottrell, S., Callaghan, M., Heaton, T., Helama, S., Helle, G., Leng, M. J., Mielikäinen, K., Oinonen, M., and Timonen, M., 2017. Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes. Nature Comm. 8, DOI: 10.1038/s41467-017-00225-z.

Brienen, R.J.W., Wanek, W., and Hietz, P., 2011.  Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species. Trees-Structure and Function 25:103-113.

Bryukhanova, M. V., Vaganov, E. A., and Wirth, C., 2011. Influence of climatic factors and reserve assimilates on the radial growth and carbon isotope composition in tree rings of deciduous and coniferous species.  Contemporary Problems of Ecology 4(2): 126-132, DOI: 10.1134/S1995425511020020.

Buhay, W.M., Timsic, S., Blair, D., Reynolds, J., Jarvis, S., Petrash, D., Rempel, M., and Bailey, D., 2008. Riparian influences on carbon isotopic composition of tree rings in the Slave River Delta, Northwest Territories, Canada.  Chemical Geology 252:9-20.

Bukata, A.R., Kyser, T.K., 2008. Tree-ring elemental concentrations in oak do not necessarily passively record changes in bioavailability.  Science of The Total Environment 390(1): 275-286

Choi, W.J., Lee, S.-M., Chang, S.X., and Ro, H.-M., 2005. Variations of δ13C and δ15N in Pinus Densiflora tree-rings and their relationship to environmental changes in eastern Korea. Water, Air, and Soil Pollution 164: 173-187.

Choury, Z., Shestakova, T.A., Himrane, H., Touchan, R., Kherchouche, D., Camarero, J.J., Voltas, J., 2017.  European Journal of Forest Research 136:139–152, https://doi.org/10.1007/s10342-016-1014-3.

Cooper, L. and Solis, C., 2003. 18O and 13C in leaf litter versus tree ring cellulose as proxy isotopic indicators of climate change. In: North American Temperate Deciduous Forest Response to Changing Precipitation Regimes. P. Hanson and S. Wullschleger, eds.  Springer Verlag, New York. pp. 140-157.

Craig, H. 1954. Carbon-13 variations in sequoia rings and the atmosphere. Science 119: 141-143.

 

Cregg, B.M., Olivas-Garcia, J.M. and Hennessey, T.C. 2000. Provenance variation in carbon isotope discrimination of mature ponderosa pine trees at two locations in the Great Plains. Can. J. For. Res. 30: 428-439.

D’Alessandro, C. M., M. R., Guerrieri, A. Saracino, 2004. Comparing carbon isotope composition of bulk wood and holocellulose from Quercus cerris, Fraxinus ornus and Pinus radiata tree rings, Forest@ 1: 51-57.

del Castillo, J., Aguilera, M., Voltas, J., Ferrio, J.P., 2013. Isoscapes of tree‐ring carbon‐13 perform like meteorological networks in predicting regional precipitation patterns. Journal of Geophysical Research Biogeosciences 118(1):352-360.

del Castillo, J., Voltas, J., Ferrio, J.P., 2014. Carbon isotope discrimination, radial growth, and NDVI share spatiotemporal responses to precipitation in Aleppo pine. Trees‒Structure and Function 29:223-233, doi:10.1007/s00468-014-1106-y.

De Micco, V., Battipaglia, G., Brand, W., Linke, P., Saurer, M., Aronne, G., Cherubini, P., 2012.  Discrete versus continuous analysis of anatomical and δ13C variability in tree rings with intra-annual density fluctuations. Trees 26(2):513-524.

De Micco, V., Saurer, M., Aronne, G., Tognetti, R. and Cherubini, P., 2007. Variations of wood anatomy and δ13C within-tree rings of coastal Pinus pinaster showing intra-annual density fluctuations.  IAWA Journal 28: 61–74.

Dongarra, G., and Varrica, D., 2002. δ13C variations in tree rings as an indication of severe changes in the urban air quality. Atmospheric Environment 36: 5887-5896.

Drake, B.L., Hanson, D.T., Lowrey, T.K., and Sharp, Z.D., 2017. The carbon fertilization effect over a century of anthropogenic CO2 emissions: Higher intracellular CO2 and more drought resistance among invasive and native grass species contrasts with increased water use efficiency for woody pl ants in the US Southwest, Global Change Biology 23(2): 782-792, doi: 10.1111/gcb.13449.

Drew, D.M., Schulze, E.D., Downes, G.M., 2009.  Temporal variation in δ13C, wood density and microfibril angle in variously irrigated Eucalyptus nitens.  Functional Plant Biology 36: 1-10.

Duffy, J.E., McCarroll, D., Barnes, A., Bronk Ramsey, C., Davies, D., Loader, N.J., Miles, D., and Young, G.H.F., 2017.  Short-lived juvenile effects observed in stable carbon and oxygen isotopes of UK oak trees and historic building timbers. Chemical Geology 472:1-7.

Dupouey, J.-L., Leavitt, S., Choisnel, E. and Jourdain, S., 1993.  Modelling carbon isotope fractionation in tree rings based on effective evapotranspiration and soil water status. Plant, Cell and Environ. 16: 939-947.

Duquesney, A., Breda, N., Stievenard, M. and Dupouey, J.L., 1998.  Changes of tree-ring δ13C and water-use efficiency of beech (Fagus sylvatica L.) in north-east France during the past century.  Plant, Cell and Environ. 21: 565-572.

Edwards, T.W.D., Graf, W., Trimborn, P., Stichler, W., Lipp, J. and Payer, H.D., 2000.  δ13C response surface resolves humidity and temperature signals in trees.  Geochimica et Cosmochimica Acta 64: 161-167.

Eglin, T., Maunoury-Danger, F., Fresneau, C., Lelarge, C., Pollet, B., Lapierre, C., Francois, C., and Damesin, C., 2008.  Biochemical composition is not the main factor influencing variability in carbon isotope composition of tree rings. Tree Physiology 28(11): 1619-1628.

Eilmann, B., Buchmann, N., Siegwolf, R., Saurer, M., Cherubini, P., and Rigling, A., 2010.  Fast response of Scots pine to improved water availability reflected in tree-ring width and δ13C. Plant, Cell and Environ. 33: 1351-1360.

Farquhar, G.D., O'Leary, M.H., and Berry, J.A., 1982.  On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves.  Aust. J. Plant Physiol. 9: 121-137.

Farmer, J.G., 1979. Problems in interpreting tree-ring δ13C records. Nature 279: 229-231.

Farmer, J.G., and Baxter, M.S. 1974. Atmospheric carbon dioxide levels as indicated by the stable isotope record in wood. Nature 247: 273-275.

February, E.C. and Stock, W.D., 1999.  Declining trend in the 13C/12C ratio of atmospheric carbon dioxide from tree rings of South African Widdrintonia cedarbergensis.  Quaternary Research 52: 229-236.

Feng, X. and Epstein, S. 1995.  Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentrations.  Geochimica et Cosmochimica Acta 59: 2599-2608.

Feng, X. and Epstein, S. 1996.  Climatic trends from isotopic records of tree rings: The past 100-200 years.  Climatic Change 33: 551-562.

Feng, X. 1998.  Long-term ci/ca response of trees in western North America to atmospheric CO2 concentration derived from carbon isotope chronologies.  Oecologia 117: 19-25.

Feng, X. 1999. Trends in intrinsic water-use efficiency of natural trees for the past 100-200 years: A response to atmospheric CO2 concentration. Geochimica et Cosmochimica Acta 63: 1891-1903.

Fernández‐de‐Uńa, L., McDowell, N.G., Cańellas, I., Gea‐Izquierdo, G., 2016. Disentangling the effect of competition, CO2 and climate on intrinsic water‐use efficiency and tree growth. Journal of Ecology 104:678-690.

Ferrio, J.P., Florit, A., Vega, A., Serrano, L., and Voltas, J., 2003. δ13C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis. Oecologia 137: 512-518.

Fichtler, E., Helle, G., Worbes, M., 2010.  Stable carbon isotope time series from tropical tree rings indicate a precipitation signal.  Tree-Ring Research 66(1):35-49.

Foroozan, Z., Pourtahmasi, K., Bräuning, A., 2015. Stable oxygen isotopes in juniper and oak tree rings from northern Iran as indicators for site-specific and season-specific moisture variations. Dendrochronologia 36:33-39.

Foroozan, Z., Pourtahmasi, K., Bräuning, A., 2018. Climatic signals in stable carbon isotope ratios of juniper and oak tree rings from northern Iran. Global and Planetary Change 165:90-99.

Francey, R.J. 1981. Tasmanian tree rings belie suggested anthropogenic 13C/12C trends. Nature 290: 232-235.

Francey, R.J. and Farquhar, G.D., 1982.  An explanation of 13C/12C variations in tree rings.  Nature 297: 28-31.

Francey, R.J. and Hubick, K.T., 1988.  Tree-ring carbon-isotope ratios re-examined. Nature 333: 712.

Frank, D. C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., Treydte, K., Zimmerman, N.E. Schleser, G.H. Ahlstrom, A., Ciais, P., 2015. Water-use efficiency and transpiration across European forests during the Anthropocene. Nature Climate Change 5:579–583.

Freyer, H.D. 1979. On the 13C record in tree rings. Part 1. 13C variations in northern hemispheric trees during the last 150 years. Tellus 31: 124-137.

Freyer, H.D. 1979. On the 13C record in tree rings. Part 2. Registration of microenvironmental CO2 and anomalous pollution effect. Tellus 31: 308-312.

Freyer, H.D. 1981. Recent 13C/12C trends in atmospheric CO2 and tree rings. Nature 293: 679-680.

Freyer, H. D. 1986. Interpretation of the Northern hemispheric record of 13C/12C trends of atmospheric CO2 in tree rings. In: The Changing Carbon Cycle: A Global Analysis. Springer-Verlag, 125–150.

Freyer, H.D. and Belacy, N. 1983. 13C/12C records in Northern Hemispheric trees during the past 500 years- anthropogenic impact and climate superpositions. Journal of Geophysical Research 88: 6844-6852.

Freyer, H.D. and Wiesberg, L., 1973.  13C-decrease in modern wood due to the large-scale combustion of fossil fuels. Naturwissenschaften 60: 517-518.

Gagen, M., McCarroll, D. and Edouard, J.-L., 2004.  Latewood width, maximum density, and stable carbon isotope ratios of pine as climate indicators in a dry subalpine environment, French Alps.  Arctic, Antarctic and Alpine Research 36(2): 166–171.

Gagen, M., McCarroll, D. and Edouard, J.-L., 2006. Combining ring width, density, and stable carbon isotope proxies to enhance the climate signal in tree-rings: an example from the southern French Alps. Climatic Change 78: 363-379.  

Gagen, M., McCarroll, D., Loader, N.J., Robertson, I., Jalkanen, R. and Anchukaitis, K.J., 2007.  Exorcising the ‘segment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. The Holocene 17(4): 435–446.

Gagen, M., McCarroll, D., Robertson, I., Loader, N.J. and Jalkanen, R., 2008.  Do tree ring δ13C series from Pinus sylvestris in northern Fennoscandia contain long-term non-climatic trends?  Chemical Geology 252:42-51.

Gagen, M., Finsinger, W., Wagner-Cremer, F., McCarroll, D., Loader, N.J., Robertson, I., Jalkanen, R., Young, G., Kirchhefer, A., 2011. Evidence of changing intrinsic water-use efficiency under rising atmospheric CO2 concentrations in Boreal Fennoscandia from subfossil leaves and tree ring d13C ratios. Global Change Biology 17:1064–1072.

Gagen, M.H., Zorita, E., McCarroll, D., Young, G.H.F., Grudd, H., Jalkanen, R., Loader, N.J., Robertson, I. and Kirchhefer, A.J., 2011. Cloud response to summer temperatures in Fennoscandia over the last thousand years. Geophysical Research Letters 38. doi:10.1029/2010GL046216.

Galle, A., Esper, J., Feller, U., Ribas-Carbo, M. and Fonti, P., 2010. Responses of wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of summer drought. Annals of Forest Science 67(8), doi:10.1051/forest/2010045.

Gebrekirstos, A., van Noordwijk, M., Neufeldt, H. and Mitlöhner, R., 2011. Relationships of stable carbon isotopes, plant water potential and growth: an approach to asses water use efficiency and growth strategies of dry land agroforestry species. Trees-Structure and Function 25: 95-102.

Gebrekirstos, A., Worbes, M., Teketay, D., Fetene, M., Mitlöhner. R., 2009.  Stable carbon isotope ratios in tree rings of co-occurring species from semi-arid tropics in Africa: Patterns and climatic signals. Global and Planetary Change 66:253-260.

Gerhart, L.M., Harris, J.M., Nippert, J.B., Sandquist, D.R., Ward, J.K., 2012. Glacial trees from the La Brea tar pits show physiological constraints of low CO2. New Phytologist 194:63-69.

Gomez, A., Singer, M.J., Powers, R.F., and Horwath, W.R., 2002. Soil compaction effects on water status of ponderosa pine assessed through 13C/12C composition. Tree Physiology 22(7):459-67.

Grinsted, M.J. and Wilson, A.T. 1979. Variations of 13C/12C ratio in cellulose of Agathis australis (kauri) and climatic change in New Zealand during the last millennium.  New Zealand J. of Science 22: 55-61.

Grinsted, M.J., Wilson, A.T. and Ferguson, C.W. 1979. 13C/12C ratio variations in Pinus longaeva (bristlecone pine)  celluose during the last millennium. Earth and Planetary Science Letters 42: 251-253.

Guy, D.D. and Holowachuk, D.L., 2001.  Population differences in stable carbon isotope ratio of Pinus contorta Dougl. ex Loud.: Relationship to environment, climate of origin, and growth potential.  Canadian J. Botany 79: 274-283.

Haavik, L., Stephen, F., Fierke, M., Salisbury, V., Leavitt, S.W. and Billings, S., 2008. Tree-ring δ13C and historic growth patterns as indicators of Northern red oak (Quercus rubra Fagaceae) susceptibility to red oak borer (Enapholodes rufulus (Haldeman) (Coleoptera: Cerambycidae)). Forest Ecology and Management 255:1501–1509.

Hafner, P., Gričar, J., Skudnik, M., and Levanič, T., 2015. Variations in environmental signals in tree-ring indices in trees with different growth potential. PLoS One 10(11):e0143918.

Hafner, P., McCarroll, D., Robertson, I., Loader, N., Gagen, M., Young, G., Bale, R., Sonninen, E., and Levanič, T., 2014. A 520 year record of summer sunshine for the eastern European Alps based on stable carbon isotopes in larch tree rings. Climate Dynamics 43:971-980. doi:10.1007/s00382-013-1864-z.

Hanba, Y.T., Matsui, K. and Wada, E., 1996. Solar radiation affects modern tree-ring δ13C: Observations at a cool-temperate forest in Japan.  Isotopes in Environmental and Health Studies 32: 55-62

Harkness, D.D. and Miller, B.F. 1980. Possibility of climatically induced variations in the 14C and 13C enrichment patterns as recorded by a 300-year-old Norwegian pine.  Radiocarbon 22: 291-298.

Heinrich, I., Touchan, R., Dorado Lińán, I., Vos, H., Helle, G., 2013. Winter-to-spring temperature dynamics in Turkey derived from tree rings since AD 1125. Climate Dynamics 41:1685–1701, DOI: 10.1007/s00382-013-1702-3. 

Helama, S., Arppe, L., Timonen, M., Mielikäinen, K., and Oinonen, M., 2015. Age-related trends in subfossil tree-ring δ13C data. Chemical Geology 416:28–35. doi:10.1016/j.chemgeo.2015.10.019.

Helle, G. and Schleser, G.H., 2004. Beyond CO2-fixation by Rubisco – an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant, Cell and Environment 27:367–380.

Helle, G., Schleser, G.H., and Bräuning, A. 2002. Climate history of the Tibetan Plateau for the last 1500 years as inferred from stable carbon isotopes in tree-rings. In: Study of Environmental Change using Isotope Techniques. International Atomic Energy Agency, IAEA-CN-80/80, C&S Papers Series 13, p. 301-311.

Hemming, D., Fritts, H., Leavitt, S.W., Wright, W., Long, A., and Shashkin, A., 2001.  Modelling tree-ring δ13C.  Dendrochronologia 19(1): 23-38.

Hemming, D.L., Switsur, V.R., Waterhouse, J.S., Heaton, T.H.E., and Carter, A.H.C. 1998. Climate variation and the stable carbon isotope composition of tree ring cellulose: An intercomparison of Quercus robur, Fagus sylvatica and Pinus silvestris.  Tellus 50B: 25-33.

Hereş, A.M., Voltas, J., López, B.C., and Martínez-Vilalta, J., 2014. Drought-induced mortality selectively affects Scots pinetrees that show limited intrinsic water-use efficiencyresponsiveness to raising atmospheric CO2. Functional Plant Biology 41:244–256.

Hietz, P., Wanek, W. and Dünisch, O., 2005. Long-term trends in cellulose δ13C and water-use efficiency of tropical Cedrela and Swietenia from Brazil. Tree Physiology 25:745–752

Huang Y., Eglinton, G., Ineson, P., Bol. R., and Harknesss, D., 1999. The effects of nitrogen fertilisation and elevated CO2 on the lipid biosynthesis and carbon isotopic discrimination in birch seedlings (Betula pendula). Plant and Soil 216: 35-45.

Hou, Aimin, Peng, S., Zhou, G., and Wen, D., 2001.  Re-examining the reliability of tree-ring isotope ratio as a historical CO2 proxy.  Chinese Science Bulletin 48: 17-21.

Hultine, K.R., Dudley, T.L., and Leavitt, S.W., 2013. Herbivory-induced mortality increases with radial growth in an invasive riparian phreatophyte.  Annals of Botany 11(6):1197-206, doi: 10.1093/aob/mct077.

Hultine, K.R., Marshall, J.D. 2000. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123: 32-40.

Jäggi, M., Saurer, M., Fuhrer and Siegwolf, R.  2002.  The relationship between the stable carbon isotope composition of needle bulk material, starch, and tree rings in Picea abies.  Oecologia 131: 325-332.

Jansen, H.S., 1962.  Depletion of carbon-13 in young kauri trees.  Nature 196: 84-85.

Jedrysek, M.O., Skrzypek, G., Kaluzny, A, Krapiek, M., Halas, S. and. Pazdur, A., 1998.  Paleotemperature scale δ13C record in tree rings, δ13C record in a peat core: why do they correlate?  Materials and Geoenvironment 45: 99-106.

Jedrysek, M.O., Krapiek, M., Skrzypek, G., and Kauzny, A., 2003. Air-pollution effect and paleotemperature scale versus records in tree rings and in a peat core (Southern Poland). Water, Air, and Soil Pollution 145: 359–375.

Kagawa, A., Leavitt, S.W., 2010. Stable carbon isotopes of tree rings as a tool to pinpoint timber geographic origin. J. of Wood Science, doi: 10.1007/s10086-009-1085-6. Special Issue “Wood Science and Technology for Mitigation of Global Warming”.

Kagawa A., Naito D., Sugimoto A., and Maximov T.C., 2003. Effects of spatial and temporal variability in soil moisture on widths and δ13C values of eastern Siberian tree rings. Journal of Geophysical Research 108 (D16): 4500. doi:10.1029/2002JD003019.

Kagawa A., Sugimoto A., and Maximov T.C., 2006. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant, Cell and Environment 29: 1571–1584

Kagawa A., Sugimoto A., and Maximov T.C., 2006. Seasonal course of translocation, storage and remobilization of C-13 pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. New Phytologist 171: 793-804.

Kagawa A., Sugimoto A., Yamashita K., and Abe H., 2005. Temporal photosynthetic carbon isotope signatures revealed in a tree ring through 13CO2 pulse-labelling. Plant, Cell and Environment 28: 906-915.

Keller, K.M. Lienert, S., Bozbiyik, A., Stocker, T.F., Churakova (Sidorova), O.V., Frank, D.C., Klesse, S., Koven, C.D., Leuenberger, M., Riley, W.J., Saurer, M., Siegwolf, R., Weigt, R.B., and Joos, F., 2017. 20th century changes in carbon isotopes and water-use efficiency: tree-ring based evaluation of the CLM4.5 and LPX-Bern models. Biogeosci. 14: 2641–2673, https://doi.org/10.5194/bg-14-2641-2017.

Kirdyanov, A.V., Treydte, K.S., Nikolaev, A., Helle, G. and Schleser, G.H., 2008. Climate signals in tree-ring width, density and δ13C from larches in Eastern Siberia (Russia). Chemical Geology 252:31-41.

Kitagawa, H. and Matsumoto, E. 1993. δ13C records of Japanese cedars from Yakushima Island and past atmospheric CO2. Geochemical Journal 27: 397-402.

Klein, T., Hemming, D., Lin, T.B., Grünzweig, J.M., Maseyk, K., Rotenberg, E. and Yakir, D., 2005. Association between tree-ring and needle δ13C and leaf gas exchange in Pinus halepensis under semi-arid conditions. Oecologia 144: 45-54.

Koretsune, S., Fukuda, K., Chang, Z., Shi, F. and Ishida, A., 2009. Effective rainfall seasons for interannual variation in δ13C and tree-ring width in early and late wood of Chinese pine and black locust on the Loess Plateau, China. Journal of Forest Research 14: 88-94.

Krepkowski, J., Gebrekirstos, A., Shibistova, O., Bräuning, A., 2013.  Stable carbon isotope labeling reveals different carry-over effects between functional types of tropical trees in an Ethiopian mountain forest. New Phytologist 199(2):431-440.

Kress, A., Young, G.H.F., Saurer, M., Loader, N.J., Siegwolf, R.T.W. and McCarroll, D., 2009. Stable isotope coherence in the earlywood and latewood of treeline conifers. Chem. Geol. 268: 52–57.

Krishnamurthy, R.V. 1996. Implications of a 400 year tree ring based 13C/12C chronology.  Geophysical Research Letters 23: 317-374.

Krishnamurthy, R.V. and Machavaram, M., 2000.  Is there a stable isotope evidence for the CO2 fertilization effect?  Proc. Indian Acad. Sci. (Earth Planet. Sci.) 109: 141-144.

Leavitt, S.W., 1993.  Environmental Information from 13C/12C ratios of wood.  Geophysical Monograph 78:325-331 (Amer. Geophys. Union).

Leavitt, S.W. 1993.  Seasonal 13C/12C changes in tree rings:  species and site coherence, and a possible drought influence. Canadian Journal of Forest Research 23: 210-218.

Leavitt, S.W. 1994.  Major wet interval in White Mountains Medieval Warm Period evidenced in δ13C of bristlecone pine tree rings.  Climatic Change 26: 299-307.

Leavitt, S.W., 2001.  Seasonal response of δ13C in Pinus resinosa Ait. seedling growth rings to changing environment in controlled growth experiments.  Dendrochronologia 19(1): 9-22.

Leavitt, S.W., 2002. Prospects for reconstruction of seasonal environment from tree-ring δ13C: Baseline findings from the Great Lakes area, U.S.A.  Chemical Geology 192(1-2): 47-58.

Leavitt, S.W., 2007. Regional expression of the 1988 U.S. Midwest drought in seasonal δ13C of tree rings. Journal of Geophysical Research- Atmospheres 112, D06107, doi:10.1029/2006JD007081.

Leavitt, S.W., 2008. Tree-ring isotopic pooling without regard to mass: No difference from averaging δ13C values of individual trees.  Chemical Geology 252:52–55.

Leavitt, S.W. and Baisan, C.H., 2001.  Variability of seasonal δ13C patterns in Apache pine from southern Arizona, USA.  The Palaeobotanist 50(1): 117-123.

Leavitt, S.W., Chase, T.N., Rajagopalan, B., Lee, E., Lawrence, P.J., Woodhouse, C.A., 2007. Southwestern U.S. drought maps from pinyon tree-ring carbon isotopes. Eos Transactions of the  American Geophysical Union 88(4):39-40 (Jan. 23, 2006).

Leavitt, S.W., Chase, T.N., Rajagopalan, B., Lee, E., Lawrence, P.J., 2008. Southwestern U.S. tree-ring carbon isotope indices as a possible proxy for reconstruction of greenness of vegetation.  Geophys. Res. Lett. 35, L12704, doi:10.1029/2008GL033894.

Leavitt, S.W., Hughes, M.K., Yu, L. and Zhisheng, A., 1995. Stable-carbon isotope tree-ring chronologies from Xian, China. In: Tree Rings, From the Past to the Future, Proc. of the Intl. Workshop on Asian and Pacific Dendrochronology (March 4-9, 1995). S. Ohta, T. Fujii, N. Okada, M.K. Hughes and D. Eckstein (eds.), Forestry and Forest Products Research Institute Scientific Meeting Report ISSN 1341-1969, Tsukuba, Japan, p. 182-186.

Leavitt, S.W., Idso, S.B., Kimball, B.A., Burns, J.M., Sinha, A. and Stott, L., 2003.  The effect of long-term atmospheric CO2 enrichment on the intrinsic water-use efficiency of sour orange trees.  Chemosphere: Global Change Science 50(2): 217-222.

Leavitt, S.W. and Kalin, R.M., 1992.  A new tree-ring width, δ13C and 14C investigation of the Two Creeks site.  Radiocarbon 34:792-797.

Leavitt, S.W. and Lara, A. 1994.  South American tree rings show declining δ13C trend.  Tellus 46B: 152-157.

Leavitt, S.W., Liu, Y., Hughes, M.K., Liu, R., An, Z., Gutierrez, G.M., Danzer, S.R. and Shao, X., 1995. A single-year δ13C chronology from Pinus tabulaeformis (Chinese pine) tree rings at Huangling, China.  Radiocarbon 37: 605-610.

Leavitt, S.W. and Long, A., 1982.  Evidence for 13C/12C fractionation between tree leaves and wood.  Nature 298:742-744.

Leavitt, S.W. and Long, A., 1983. An atmospheric 13C/12C reconstruction generated through removal of climate effects from tree-ring 13C/12C measurements. Tellus 35B: 92-102.

Leavitt, S.W. and Long, A. 1984.  Sampling strategy for stable carbon isotope analysis of tree rings in pine.  Nature 311: 145-147.

Leavitt, S.W. and Long, A., 1985.  The global biosphere as net CO2 source or sink:  evidence from carbon isotopes in tree rings.  In Planetary Ecology, Caldwell, D.E., Brierly, J.A. and Brierly, C.L., eds.  Van Nostrand Reinhold Company, New York, p. 89-99.

Leavitt, S.W. and Long, A. 1986.  Stable-carbon isotope variability in tree foliage and wood.  Ecology 67: 1002-1010.

Leavitt, S.W. and Long, A., 1986.  Trends of 13C/12C ratios in pinyon pine tree rings of the American southwest and the global carbon cycle.  Radiocarbon 28: 376-382.

Leavitt, S.W. and Long, A. 1988.  Stable carbon isotope chronologies from trees in the southwestern United States.  Global Biogeochemical Cycles 2: 189-198.

Leavitt, S.W. and Long, A., 1989.  Intertree variability of δ13C in tree rings.  In Stable Isotopes in Ecological Research, Rundel, P.W., Ehleringer, J.R., and Nagy, K.A., eds.  Springer-Verlag, New York, Chapter 7.

Leavitt, S.W. and Long, A. 1989.  Drought indicated in carbon-13/carbon-12 ratios of southwestern tree rings.  Water Resources Bulletin 25: 341-347.

Leavitt, S.W. and Long, A., 1989.  The atmospheric δ13C record as derived from 56 pinyon trees at 14 sites in the southwestern U.S.  Radiocarbon 31:469-474.

Leavitt, S.W. and Long, A. 1991.  Seasonal stable-carbon isotope variability in tree rings: possible paleoenvironmental signals.  Chemical Geology (Isotope Geoscience Section) 87: 59-70.

Leavitt, S.W. and Long, A., 1992.  Altitudinal differences in δ13C of bristlecone pine. Naturwissenschaften 79:178-180.

Leavitt, S.W., Long, A. and Dean, J.S., 1985.  Tree-ring dating through pattern-matching of stable-carbon isotope time series.  Tree-Ring Bulletin 45:1-9.

Leavitt, S.W., Wright, W.E. and Long, A., 1998.  ENSO signal in δ13C of pre‑ and post‑False Latewood of ponderosa Pine Tree Rings in Southeastern Arizona.  Proceedings of 14th Annual Pacific Climate (PACLIM) Workshop, Wilson, R. and Tharp, V.L. (eds.), April 6-9, 1997, Two Harbors, Santa Catalina Island.  Technical Report 57 of the Interagency Ecological Program for the Sacramento-San Joaquin Estuary, California Department of Water Resources, pp. 37-44.

Leavitt, S.W., Wright, W.E., Long, A., 2002.  Spatial expression of ENSO, drought and summer monsoon in seasonal δ13C of ponderosa pine tree rings in southern Arizona and New Mexico. J. Geophys. Res. 107 (D18) 4349, doi:10.1029/2001JD001312.

Leffler, A.J. and Evans, A.S., 1999. Variation in carbon isotope composition among years in the riparian tree Populus fremontii. Oecologia 119: 311-319

Leonardi, S., Gentilesca, T., Guerrieri, R., Ripullone, F., Magnani, F., Mencuccini, M., Noije, T. V., and Borghetti, M., 2012. Assessing the effects of nitrogen deposition and climate on carbon isotope discrimination and intrinsic water-use efficiency of angiosperm and conifer trees under rising CO2 conditions. Global Change Biology 18:2925-2944.

Levanič, T., Čater, M., and McDowell, N.G., 2011.  Associations between growth, wood anatomy, carbon isotope discrimination and mortality in a Quercus robur forest.  Tree Physiology 31(3): 298-308.

Levanič, T., Gričar, J., Gagen, M., Jalkanen, R., Loader, N.J., McCarroll, D., Oven, P., and Robertson, I., 2009.  The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees 23(1): 169-180.

Li, Z.-H., Leavitt, S.W., Mora, C.I. and Liu, R.-M., 2005. Influence of earlywood–latewood size and isotope differences on long-term tree-ring δ13C trends. Chemical Geology 216: 191-2001.

Linares, J. C., and Camarero, J.J., 2012. From pattern to process: linking intrinsic water -use efficiency to drought drought-induced forest decline. Global Change Biology 18(3):1000-1015, doi: 10.1111/j.1365 1365-2486.2011.02566.x.

Linares, J.C., Delgado-Huertas, A., Camarero, J.J., Merino, J., Carreira, J.A., 2009. Competition and drought limit the response of water-use efficiency to rising atmospheric carbon dioxide in the Mediterranean fir Abies pinsapo. Oecologia 161:611-624.

Liu, Y., Ma, L.M., Cai, Q.F., An, Z.S., Liu, W.G., Gao, L.Y., 2002. Reconstruction of summer temperature (June-August) at Mt. Helan, China, from tree-ring stable carbon isotope values since AD 1890. Science in China Series D - Earth Sciences 45: 1127-1136.

Liu, Y., Ma, L., Leavitt, S.W., Cai, Q., and Liu, W., 2004.  A preliminary seasonal precipitation reconstruction from tree-ring stable carbon isotopes at Mt. Helan, China, since AD 1804. Global and Planetary Change 41: 229-239.

Liu, Y., Wang, Y., Li, Q., Song, H., Linderhlom, H.W., Leavitt, S.W., Wang, R., and An, Z., 2014. Treering stable carbon isotope-based May-July temperature reconstruction over Nanwutai, China, for the past century and its record of 20th century warming. Quaternary Science Reviews 93:67–76 doi:10.1016/j.quascirev.2014.03.023.

Liu, X., Shao, X., Liang, E., Zhao, L., Chen, T., Qin, D., and Ren, J., 2007. Species-dependent responses of juniper and spruce to increasing CO2 concentration and to climate in semi-arid and arid areas of northwestern China.  Plant Ecology 193: 195-209.

Liu, X.H., Qin, D.H., Zhao, X.M., Chen, T., Ren, J.W., 2003. Climatic significance of stable carbon isotope in tree rings of Abies spectabilis in southeastern Tibet. Chinese Science Bulletin 48: 2000-2004.

Liu, X., Zhao, L., Chen, T., Shao, X., Liu, Q., Hou, S., Qin, D., An, W., 2011.  Combined tree-ring width and δ13C to reconstruct snowpack depth: A pilot study in the Gongga Mountain, west China. Theor. Appl. Climatol. 103: 133-144.

Liu X., Shao, X. Wang, L. Liang, E. Qin, D., Ren, J. 2008. Response and dendroclimatic implications of δ13C in tree rings to increasing drought on the northeastern Tibetan Plateau, J. Geophys. Res., 113, G03015, doi:10.1029/2007JG000610.

Livingston, N.J. and Spittlehouse, D.L. 1993.  Carbon isotope fractionation in tree rings in relation to the growing season water balance.  IN Stable Isotopes and Plant Carbon- Water Relations, Ehleringer, J.R., Hall, A.E., and Farquhar, G.D. (eds.), Academic, San Diego, pp. 141-153.

Livingston, N.J. and Spittlehouse, D.L. 1996.  Carbon isotope fractionation in tree ring early and late wood in relation to intra-growing season water balance.  Plant, Cell and Environment 19: 768-774.

Loader, N.J., McCarroll, D., Barker, S., Jalkanen, R., and Grudd, H., 2017.  Inter-annual carbon isotope analysis of tree-rings by laser ablation. Chemical Geology 466: 323-326.

Loader, N.J., Robertson, I., and McCarroll, D., 2003. Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeography, Palaeoclimatology, Palaeoecology 196: 395-407.

Loader, N.J. and Switsur, V.R. 1995.  Reconstructing past environmental change using stable isotopes in tree-rings. Bot. J. Scotl. 48: 65-78.

Loader, N.J., Switsur, V.R. and Field, E.M. 1995.  High-resolution stable isotope analysis of tree rings: implications of 'microdendroclimatology' for palaeoenvironmental research.  The Holocene 5: 457-460.

Loader, N.J., Switsur, V.R., Field, E.M. and Carter, A.H.C. 1999.  Stable isotope dendroclimatology helps shed light on dark age environmental change. Dendrochronologia 16-17: 163-170.

Loader, N.J., Walsh, R.P.D., Robertson, I., Bidin, K., Ong, R.C., Reynolds, G., McCarroll, D., Gagen, M., Young, G.H.F., 2011.  Recent trends in the intrinsic water-use efficiency of ringless rainforest trees in Borneo. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1582): 3330-3339.

Loader, N.J., Young, G.H.F., Grudd, H., McCarroll, D., 2013.  Stable carbon isotopes from Torneträsk, northern Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quaternary Science Reviews 62: 97–113.

MacIntyre, F. 1979. Carbon-13 in tree-rings indicates no record of sea-surface temperature. Science 205: 1127-1129.

Managave, S., Shimla, P., Borgaonkar, H.P., Bhattacharyya, A., Ramesh, R., 2017. Regional differences in the carbon isotopic compositions of teak from two monsoonal regimes of India. Dendrochronologia 44: 203–210.

Marshall, J.D. and Monserud, R.A. 1996.  Homeostatic gas-exchange parameters inferred from 13C/12C in tree rings of conifers.  Oecologia 105: 13-21.

Martin, B. and Sutherland, E.K. 1990. Air pollution in the past recorded in width and composition of stable carbon isotopes of annual growth rings of Douglas-fir. Plant, Cell, and Environment 13:839-844.

Martin‐Benito, D., Del Rio, M., Heinrich, I., Helle, G., Canellas, I., 2010. Response of climate–growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. Forest Ecology and Management 259:967–975.

Maseyk, K., Hemming, D., Angert, A., Leavitt, S.W., Yakir, D., 2011. Increase in water-use efficiency and underlying processes in pine forests across a precipitation gradient in the dry Mediterranean region over the past 30 years.  Oecologia 167: 573-585.

Matsumoto, E. and Kitigawa, H., 1995.  Climatic implications of δ13C variations in a Japanese cedar Cryptomeria japonica) during the last two millennia.  In: Tree Rings, From the Past to the Future, Proc. of the Intl. Workshop on Asian and Pacific Dendrochronology (March 4-9, 1995). S. Ohta, T. Fujii, N. Okada, M.K. Hughes and D. Eckstein (eds.), Forestry and Forest Products Research Institute Scientific Meeting Report ISSN 1341-1969, Tsukuba, Japan, p. 170-175.

Mazany, T., Lerman, J.C. and Long, A. 1980. Carbon-13 in tree-ring cellulose as an indicator of past climates. Nature 287: 432-434.

McCarroll, D., Gagen, M., Loader, N.J., Robertson, I., Anchukaitis, K.J., Los, S., Young, G.H.F., Jalkanen, R., Kirchhefer, A., Waterhouse, J.S., 2009.  Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere.  Geochim. Cosmochim. Acta 73:1539–1547.

McCarroll, D., Gagen, M., Loader, N.J., Robertson, I., Anchukaitis, K.J., Los, S., Young, G.H.F., Jalkanen, R., Kirchhefer, A., Waterhouse, J.S., 2010.  Erratum to “Correction of tree ringstable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere”, Geochim. Cosmochim. Acta 73: 1539–1547. Geochim. Cosmochim. Acta 74: 3040.

McCarroll, D., Jalkanen, R., Hicks, S., Tuovinen M., Gagen, M., Pawallek, F., Eckstein, D., Schmitt, U., Autio J. and Heikkinen, O.  2003. Multiproxy dendroclimatology: A pilot study in northern Finland.  The Holocene 13: 831-841.

McCarroll, D. and Pawallek, F., 1998.  Stable carbon isotope ratios of latewood cellulose in Pinus sylvestris from northern Finland: Variability and signal strength.  The Holocene 8: 675-684.

McCarroll, D., and Pawellek, F., 2001. Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. Holocene 11: 517-526.

McCarroll, D., Tuovinen, M., Campbell, R., Gagen, M., Grudd, H., Jalkanen, R., Loader, N. J. and Robertson, I., 2011. A critical evaluation of multi-proxy dendroclimatology in northern Finland. J. Quaternary Sci. 26: 7-14.

McCarroll, D., Whitney, M., Young, G.H.F., Loader, N.J., and Gagen M.H. 2017. A simple stable carbon isotope method for investigating changes in the use of recent versus old carbon in oak. Tree Physiology. 10.1093/treephys/tpx030.

McCormac, F.G., Baillie, M.G.L., Pilcher, J.R., Brown, D.M. and Hoper, S.T., 1994. δ13C measurement from the Irish oak chronology.  Radiocarbon 36: 27–35.

McDowell, N.G., Adams, H.D., Bailey, J.D., Hess, M., and Kolb, T.E., 2006.  Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes.  Ecological Applications 16: 1164-1182.

McDowell, N.G., Allen, C.D., and Marshall L., 2010. Growth, carbon-isotope discrimination, and drought drought-associated mortality across a Pinus ponderosa elevational transect. Global Change Biology 16(1): 399-415, doi: 431 10.1111/j.1365-2486.2009.01994.x.

McDowell, N.G., Brooks, J.R., Fitzgerald, S.A., and Bond, B.J., 2003. Carbon isotope discrimination and growth response of old Pinus ponderosa trees to stand density reductions. Plant, Cell and Environment 26: 631-644.

McNulty, S.G. and Swank, W.T. 1995.  Wood δ13C as a measure of annual basal area growth and soil water stress in a Pinus strobus forest.  Ecology 76: 1581-1586.

Michelot, A., Eglin, T., Dufręne, E., Lelarge-Trouverie, C., Damesin, C., 2011. Comparison of seasonal variations in water-use efficiency calculated from the carbon isotope composition of tree rings and flux data in a temperate forest.  Plant, Cell and Environment 34: 230-244.

Monserud, R.A. and Marshall, J.D., 2001.  Time-series analysis of δ13C from tree rings. I. Time trends and autocorrelation. Tree Physiology 21: 1087-1102.

Newberry, T.L., 2010.  Effect of climatic variability on δ13C and tree-ring growth in pińon pine (Pinus edulis). Trees-Structure and Function 24:551-559.

Nguyen-Queyrens, A., Ferhi, A., Loustau, D. And Guehl, J.-M. 1998. Within-ring δ13C spatial variability and interannual variations in wood cellulose of two contrasting provenances of Pinus pinaster. Can. J. For. Res. 28: 766-773.

Niemela, P., Lumme, I., Mattson, W. and Arkhipov, V. 1997. 13C in tree rings along an air pollution gradient in the Karelian Isthmus, northwest Russia and southeast Finland. Can. J. For. Res. 27: 609-612.

Norström, E., Holmgren, K. and Mörth, M., 2005. Rainfall-driven variations in δ13C composition and wood anatomy of Breonadia salicina trees from South Africa between AD 1375 and 1995. South African Journal of Science 101:162–168.

Novak, K., Cherubini, P., Saurer, M., Fuhrer, J., Skelly, J.M., Kräuchi, and M. Schaub, N., 2007.  Ozone air pollution effects on tree-ring growth, δ13C, visible foliar injury and leaf gas exchange in three ozone-sensitive woody plant species, Tree Physiology 27(7):941-949.

Nozaki, Y., Rye, D.M., Turekian, K.K. and Dodge, R.E. 1978. 200 year record of carbon-13 and carbon-14 variations in a bermuda coral. Geophysical Research Letters 10: 825-828.

Ogle, N. and McCormac, F.G. 1994. High-resolution δ13C measurements of oak show a previously unobserved spring depletion.  Geophysical Research Letters 21: 2373-2375.

Ogle N., Turney C., Kalin R., O'Donnell L. and Butler C. 2005.  Palaeovolcanic forcing of short-term dendroisotopic depletion: The effect of decreased solar intensity on Irish oak. Geophys. Res. Lett.  32(4): doi:10.1029/2004GL021623.

Ohashi, S., Okada, N., Nobuchi, T., Siripatanadilok, S. and Veenin, T., 2009. Detecting invisible growth rings of trees in seasonally dry forests in Thailand: isotopic and wood anatomical approaches. Trees-Struct. Funct. 23: 813-822.

Okada, N., Fujiwara, T., Ohta, S. and Matsumoto, E., 1995. Stable carbon isotopes of Chamaecyparis obtusa grown at a high altitude region in Japan: Within and among-tree variations. In: Tree Rings, From the Past to the Future, Proc. of the Intl. Workshop on Asian and Pacific Dendrochronology (March 4-9, 1995). S. Ohta, T. Fujii, N. Okada, M.K. Hughes and D. Eckstein (eds.), Forestry and Forest Products Research Institute Scientific Meeting Report ISSN 1341-1969, Tsukuba, Japan, p. 165-169.

Park, W.-K., Choi, W.S., Okada, N., Fujiwara, T., Ahn, W.Y. and Ohta, S. 1995. Dendrochronological study on global warming in Far East: Ring width, density and δ13C analysis of Pinus koraiensis from Mt. Sorak, Korea.  J. of Korean Forestry Energy 15: 1-6.

Panek, J.A. 1996. Correlations between stable carbon-isotope abundance and hydraulic conductivity in Douglas-fir across a climate gradient in Oregon, USA.  Tree Physiology 16: 747-755.

Panek, J.A. and Waring, R.H., 1995.  Carbon isotope variation in Douglas-fir foliage: Improving the δ13C-climate relationship.  Tree Physiology 15: 657-663.

Panek, J.A. and Waring, R.H. 1997.  Stable carbon isotopes as indicators of limitations to forest growth imposed by climate stress.  Ecological Applications 7: 854-863.

Pate, J. and Arthur, D., 1998.  δ13C analysis of phloem sap carbon: novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucalyptus globules, Oecologia 117: 301-311.

Pawelczyk, S. and Pazdur, A., 2004. Carbon isotopic composition of tree rings as a tool for biomonitoring CO2 level. Radiocarbon 46(2): 701-719.

Pawelczyk, S., Pazdur, A., and Halas, S., 2004. Stable carbon isotopic composition of tree rings from a pine tree from Augustów wilderness, Poland, as a temperature and local environment conditions indicator. Isotopes Environment Health Studies 40: 145-154.

Pazdur, A., Korput, S., Fogtman, M., Szczepanek, M., Halas, S., Krapiec, M. and Szychowska-Krapiec, E., 2005. Carbon-13 in alpha-cellulose of oak latewood (Jedrzejow, Southern Poland) during the Maunder Minimum. Geological Quarterly 49(2): 165-171

Pazdur, A., Nakamura, T., Pawelczyk, S., Pawlyta, J., Piotrowska, N., Rakowski, A., Sensula, B., Szczepanek, M., 2007. Carbon isotopes in tree rings: Climate and the Suess Effect interferences in the last 400 years.  Radiocarbon 49: 775-788.

Pearman, G.I., Francey, R.J. and Fraser, P.J. 1976. Climatic implications of stable carbon isotopes in tree rings. Nature 260: 771-773.

Peng, T.H., Broecker, W.S., Freyer, H.D. and Trumbore, S. 1983.  A deconvolution of the tree-ring based δ13C record.  J. Geophys. Res. 88: 3609-3620.

Peńuelas, J., Canadell, J.G. and Ogaya, R., 2010.  Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecology and Biogeography 20: 597–608. doi:10.1111/j.1466-8238.2010.00608.x.

Peńuelas, J., Hunt, J.M., Ogaya, R., and Jump, A.S., 2008. Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Global Change Biology 14: 1076-1088.

Ponton, S., Dupouey, J.-L., Breda, N., Feuillat, F., Bodenes, C. and Dreyer, E.  2001.  Carbon isotope discrimination and wood anatomy variations in mixed stands of Quercus robur and Quercus petraea.  Plant, Cell and Environment 24: 861-868.

Porte, A. and Loustau, D., 2001. Seasonal and interannual variations in carbon isotope discrimination in a maritime pine (Pinus pinaster) stand assessed from the isotopic composition of cellulose in annual rings.  Tree Physiology 21: 861-868.

Potts, D.L. and Williams, D.G., 2004.  Response of tree ring holocellulose δ13C to moisture availability in Populus fremontii at perennial and intermittent stream reaches.  Western North American Naturalist 64: 27-37.

Qian, J., Lu, J, Tu, Q., and Wang, S., 2002.  Reconstruction of the climate in the Tianmu Mountain area, Zhejiang Province, in the last 160 years by δ13C sequence of tree ring a-cellulose.  Science in China (Series D) 45(5): 409-419.

Rasheed, F., Richard, B., Le Thiec, D., Montpied, P., Paillassa, E., Brignolas, F., and Dreyer, E., 2011. Time course of δ13C in poplar wood: Genotype ranking remains stable over the life cycle in plantations despite some differences between cellulose and bulk wood. Tree Physiology 31(11):1183-1193, doi: 10.1093/treephys/tpr108.

Rinne, K.T., Saurer, M., Kirdyanov, A.V., Bryukhanova, M.V., Prokushkin, A.S., Churakova Sidorova, O.V., Siegwolf, R.T., 2015. Examining the response of needle carbohydrates from Siberian larch trees to climate using compound-specific δ13C and concentration analyses. Plant Cell Environ. 38(11):2340-52.

Rinne, K.T., Saurer, M., Kirdyanov, A.V., Loader, N.J., Bryukhanova, M.V., Werner, R.A., Siegwolf, R.T., 2015.  The relationship between needle sugar carbon isotope ratios and tree rings of larch in Siberia. Tree Physiology 35(11):1192-205.

Robertson, I., Loader, N.J., Froyd, C.A., Zambatis, N., Whyte, I., and Woodborne, S., 2006. The potential of the baobab (Adansonia digitata L.) as a proxy climate archive.  Applied Geochemistry 21: 1674-1680.

Robertson, I., Loader, N.J., Froyd, C.A., Zambatis, N., Whyte, I., and Woodborne, S., 2006. The potential of the baobab (Adansonia digitata L.) as a proxy climate archive.  Applied Geochemistry 21: 1674-1680.

Robertson, I., Loader, N.J., McCarroll, D., Carter, A.H.C., Cheng, L., Leavitt, S.W., 2004. δ13C of tree-ring lignin as an indirect measure of climate change.  Water, Air and Soil Pollution 4: 531–544.

Robertson, I., Pollard, A.M., Heaton, T.H.E., and Pilcher, J.R., 1996.  Seasonal changes in the isotopic composition of oak cellulose.  In: Dean, J.S., Meko, D.M., Swetnam, T.W. (Eds.), Tree rings, environment and humanity: Proceedings of the international conference, Tucson, Arizona, 17-21 May 1994.  Radiocarbon, Tucson, Arizona, pp. 617-628.

Robertson, I., Rolfe, J., Switsur, V.R., Carter, A.H.C., Hall, M.A., Barker, A.C., and Waterhouse, J.S., 1997.  Signal strength and climate relationships in 13C/12C ratios of tree ring cellulose from oak in southwest Finland.  Geophysical Research Letters 24: 1487-1490.

Robertson, I., Switsur, V.R., Carter, A.H.C., Barker, A.C., Waterhouse, J.S., Briffa, K.R. and Jones, P.D., 1997.  Signal strength and climate relationships in 13C/12C ratios of tree ring cellulose from oak in east England.  J. Geophysical Res. 102: 19507-19516.

Rongmo, L., Weijian, Z., Yu, L., Fuqing, S., Mingfu, Z. and Head, J., 1988.  Measurements of the width and the ratio of stable carbon isotopes of tree rings from ancient Abies in Xianyang.  China Quaternary Research 80: 26-30 (English abstract).

Roupsard, O., Joly, H.I. and Dreyer, E. 1998. Variability of initial growth, water-use efficiency and carbon isotope discrimination in seedlings of Faidherbia albida (Del.) A. Chev., a multipurpose tree of semi-arid Africa. Provenance and drought effects. Ann. Sci. For. 55: 329-348.

Rowell, D.M., Ades, P.K., Tausz, M., Arndt, S.K. and Adams, M.A., 2009. Lack of genetic variation in tree ring δ13C suggests a uniform, stomatally-driven response to drought stress across Pinus radiata genotypes. Tree Physiology 29: 191-198.

Sakata, M. and Suzuki, K., 1998.  Assessment method for environmental stresses in trees using δ13C records of annual growth rings. Geochemical Journal 32: 331-338.

Sakata, M. and Suzuki, K., 2000.  Evaluating causes for the decline of Japanese fir (Abies firma) forests based on δ13C records of annual growth rings. Environ. Sci. Technol. 33: 373-376.

Sakata, M., Suzuki, K. and Koshiji, T., 2001.  Variations of wood δ13C for the past 50 years in declining Siebold’s beech (Fagus crenata) forests.  Environmental and Experimental Bot. 45: 33-41.

Sass-Klaassen, U., Poole, I., Wils, T., Helle, G., Schleser, G.H., van Bergen, P.F., 2004. The use of stable isotope dendrochronology for environmental interpretations from growth ring patterns in subfossil bog oaks. IAWA J. 26: 121-136.

Saurer, M., Cherubini, P., Bonani, G. and Siegwolf, R., 2003. Tracing carbon uptake from a natural CO2 spring into tree rings: an isotope approach. Tree Physiology 23: 997–1004.

Saurer, M. and Siegenthaler, U. 1989.  13C/12C ratios in tree are sensitive to relative humidity. Dendrochronologia 7: 9-13.

Saurer, M., Siegenthaler, U. and Schweingruber, F. 1995. The climate-carbon isotope relationship in tree rings and the significance of site conditions.  Tellus 47B: 320-330.

Saurer, M., Borella, S., Schweingruber, F. and Siegwolf, R., 1997.  Stable carbon isotopes in tree rings of beech: Climatic versus site-related influences. Trees 11: 291-297.

Saurer, M., Siegwolf, R.T.W., and Schweingruber, F.H., 2004. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology 10: 2109-2120.

Saurer, M., Spahni, R., Frank, D.C., Joos, F., Leuenberger, M., Loader, N.J., McCarroll, D., Gagen, M., Poulter, B., Siegwolf, R.T.W., Andreu-Hayles, L., Boettger, T., Dorado Lińán, I., Fairchild, I.J., Friedrich, M., Gutierrez, E., Haupt, M., Hilasvuori, E., Heinrich, I., Helle, G., Grudd, H., Jalkanen, R., Levanič, T., Linderholm, H.W., Robertson, I., Sonninen, E., Treydte, K., Waterhouse, J.S., Woodley, E.J., Wynn, P.M., and Young, G.H.F., 2014. Spatial variability and temporal trends in water-use efficiency of European forests. Global Change Biology 20:3700–3712. doi:10.1111/gcb.12717.

Savard, M.M., Begin, C., Parent, M., 2002. Are industrial SO2 emissions reducing CO2 uptake by the Boreal Forest?  Geology 30: 403-406.

Savard, M.M., Begin, C., Parent, M., Smirnoff, A. and Marion, J., 2004. Effects of smelter sulfur dioxide emissions: A spatiotemporal perspective using carbon isotopes in tree rings. J. Environmental Quality 33: 13-25.

Schleser, G.H., 1990. Investigations of the δ 13C pattern in leaves of Fagus sylvatica L.  J. Exp. Botany 41: 565-572.

Schleser, G.H., 1992.  δ13C pattern in a forest tree as an indicator of carbon transfer in trees.  Ecology 73: 1922-1925.

Schleser, G.H., 1994. Causes of carbon isotope behavior within tree rings.  In Proceedings of the Workshop, Tree-Ring Development, Cell Structure and Environment, Sept. 5-9, 1994, Freiburg, Germany.  H. Speicker and P. Kahle (eds.)

Schleser, G.H., Anhuf, D., Helle, G., and Vos, H., 2015. A remarkable relationship of the stable carbon isotopic compositions of wood and cellulose in tree-rings of the tropical species Cariniana micrantha (Ducke) from Brazil. Chemical Geology 401:59-66.

Schleser, G.H., Frielingsdorf, J. and Blair, A. 1999. Carbon isotope behavior in wood and cellulose during artificial aging. Chemical Geology 158: 121-130.

Schleser, G.H., Helle, G., Lucke, A. and Vos, H. 1999. Isotope signals as climate proxies: the role of transfer function in the study of terrestrial archives. Quaternary Science Review 18: 927-943. 

Schubert, B.A., and Jahren, A.H., 2011. Quantifying seasonal precipitation using high-resolution carbon isotope analyses in evergreen wood. Geochimica et Cosmochimica Acta 75: 7291-7303.

Schubert, B.A., Jahren, A.H., Eberle, J.J., Sternberg, L.S.L., and Eberth, D.A., 2012. A summertime rainy season in the Arctic forests of the Eocene. Geology, doi: 10.1130/G32856.1

Schulze, B., Wirth, C., Linke, P., Brand, W.A., Kuhlmann, I., Horna, V., Schulze, E.-D., 2004. Laser ablation-combustion-GC-IRMS—a new method for online analysis of intra-annual variation of δ13C in tree rings. Tree Physiology 24: 1193–1201.

Seibt, U., Rajabi, A., Griffiths, H. and Berry J., 2008. Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155: 441-454.

Sgherza, C., Cullen, L.E. and Grierson, P.F.  2010. Climate relationships with tree-ring width and δ13C of three Callitris species from semiarid woodlands in southwestern Australia. Australian Journal of Botany 58:175-187.

Shestakova, T.A., Aguilera, M., Ferrio, J.P., Gutiérrez, E., and Voltas, J., 2014. Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: A variance-covariance modelling approach of carbon and oxygen isotope ratios. Tree Physiology 34(8):819-38.

Sheu, D.D., Kou, P., Chiu, C.-H. and Chen, M.-J. 1996. Variability of tree-ring δ13C in Taiwan fir: Growth effect and response to May-October temperatures. Geochim. et Cosmochim. Acta 60:171-177.

Sho, K., Takahashi, H.A. and Nakamura, T., 2002. Reconstruction of climatic changes using tree-ring data of Japanese cypress grown in the southern coastal region of Lake Biwa. mss., 12 p., (in Japanese).

Silva, L.C.R., Anand, M., Oliveira, J.M., Pillar, V.D., 2009. Past century changes in Araucaria angustifolia (Bertol.) Kuntze water use efficiency and growth in forest and grassland ecosystems of southern Brazil: implications for forest expansion. Global Change Biology 15:2387–2396.

Silva, L.C.R., Gómez-Guerrero, A., Doane, T.A., and Horwath, W.R., 2015. Isotopic and nutritional evidence for species- and site-specific responses to N deposition and elevated CO2 in temperate forests. J. Geophys. Res. Biogeosci. 120:1110–1123, doi:10.1002/2014JG002865.

Silva, L.C.R., and Horwath W.R., 2013.  Explaining global increases in water use efficiency: Why have we overestimated responses to rising atmospheric CO2 in natural forest ecosystems?  PLoS One 8(1), e53089, doi:10.1371/journal.pone.0053089.

Skomarkova, M.V., Vaganov, E.A., Mund, M., Knohl, A., Linke, P., Boerner, A., and Schulze, E.-D., 2006. Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy.  Trees- Structure and Function 20:571-586.

Sladden, B., Loader, N.J., Young, G.H.F., and McCarroll, D., 2018. Examination of stable carbon and oxygen isotopic variability in the cellulose and wholewood of Castanea sativa Mill., Fagus sylvatica L., Pinus sylvestris L. and Quercus robur L. Acta Silvae et Ligni 117: 47-54, http://doi.org/10.20315/ASetL.117.4 10.20315/ASetL.117.4.

Sonninen, E. and Jungner, H. 1995. Stable carbon isotopes in tree-rings of a Scots pine (Pinus sylvestris L.) from northern Finland. IN Palaoklimataforschung 15, B. Frenzel, B. Stauffer and M.M. Weiss (eds.), ESF, Strasbourg, pp. 121-128.  

Stuiver, M. 1978. Atmospheric carbon dioxide and carbon reservoir changes. Science 129:253-258.

Stuiver, M., Burk, R.L. and Quay, P.D. 1985.  13C/12C ratios and the transfer of biospheric carbon to the atmosphere.  J. Geophys. Res. 89:11731-11748.

Stuiver, M. and Braziunas, T.F. 1987. Tree cellulose 13C/12C isotope ratios and climate change.  Nature 328:58-60.

Stuiver, M. and Braziunas, T.F. 1988. Tree-ring carbon-isotope ratios re-examined. Nature 333: 712.

Sutherland, E.K. and Martin, B. 1990. Growth response of Pseudotsuga menziesii to air pollution from copper smelting. Canadian Journal of Forest Research 20:1020-1030.

Swanborough P.W., Lamont B.B. and February E.C., 2003. δ13C and water-use efficiency in Australian grasstrees and South African conifers over the last century. Oecologia 136: 205-212.

Takahashi, H.A., Yonenobu, H., Nakamura, T. and Wada, H. 2001. Seasonal fluctuation of stable carbon isotopic composition in Japanese cypress tree rings from the last glacial period: Possibility of paleoenvironment reconstruction. Radiocarbon 43:433-438.

Tans, P.P. 1980. On calculating the transfer of carbon-13 in reservoir models of the carbon cycle. Tellus 32: 464-469.

Tans, P.P. and Mook, W.G. 1980. Past atmospheric CO2 levels and the 13C/12C ratios in tree rings. Tellus 32: 268-283.

Tang, K., Feng, X. and Funkhouser, G. 1999.  The δ13C of tree rings in full-bark and strip-bark bristlecone pine trees in the White Mountains of California.  Global Change Biology 5: 33-40.

Tardif, J.C., Conciatori, F., Leavitt, S.W., 2008. Tree rings, δ13C and climate in Picea glauca growing near Churchill, subarctic Manitoba, Canada.  Chemical Geology 252:88-101.

Tarhule, A. and Leavitt, S.W., 2004.  Stable-carbon isotope composition in annual rings of Isorberlinia doka, Daniella Oliveri, and Tamarindus indica and West African climate. Dendrochronologia 22: 61-70.

Tei, S., Sugimoto, A., Yonenobu, H., Ohta, T., and Maximov, T.C., 2014.  Growth and physiological responses of larch trees to climate changes deduced from tree-ring widths and δ13C at two forest sites in eastern Siberia. Polar Science 8:183-195.

Treydte, K.S., Frank, D.C., Saurer, M., Helle, G., Schleser, G.H. and Esper, J., 2009. Impact of climate and CO2 on a millennium-long tree-ring carbon isotope record. Geochimica et Cosmochimica Acta 73(16): 4635-4647.

Treydte, K., Schleser, G.H., Schweingruber, F.H., and Winiger, M., 2001. The climatic significance of δ13C in subalpine spruces (Lotschental, Swiss Alps). Tellus 33B: 593-611.

Vaganov, E.A.,Schulze, E.-D., Skomarkova, M.V., Knohl, A., Brand, W.A., and Roscher, C., 2009. Intra-annual variability of anatomical structure and δ13C values within tree rings of spruce and pine in alpine, temperate and boreal Europe. Oecologia 161:729–745.

van der Sleen, P., Groenendijk, P., Vlam, M., Anten, N.P.R., Boom, A. Bongers, F., Pons, T.L., Terburg, G., and Zuidema, P.A., 2015. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nature Geoscience 8:24-28.

van der Sleen, P., Soliz Gamboa, C., Helle, G. Pons, T. Anten, N., Zuidema, P., 2014. Understanding causes of tree growth response to gap formation: Δ13C values in tree rings reveal a predominant effect of light. Trees 28: 439–448.

Verheyden, A., Roggeman, M., Bouillon, S., Elskens, M., Beeckman, H., and Koedam, N., 2005. Comparison between δ13C of a-cellulose and bulk wood in the mangrove tree Rhizophora mucronata: Implications for dendrochemistry. Chemical Geology 219: 275-282.

Voelker, S.L., Brooks, J.R., Meinzer, F.C., Anderson, R., Bader, M.K.-F., Battipaglia, G., Becklin, K.M., Beerling, D., Bert, D., Betancourt, J.L., Dawson, T.E., Domec, J.C., Guyette, R.P., Körner, C., Leavitt, S.W., Linder, S., Marshall, J.D., Mildner, M., Ogée J., Panyushkina, I., Plumpton, H.J., Pregitzer, K.S., Saurer, M., Smith, A.R., Siegwolf, R.T.W., Stambaugh, M.C., Talhelm, A.F., Tardif, J.C., Van de Water, P.K., Ward, J.K., and Wingate, L., 2016. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: Evidence from carbon isotope discrimination in paleo and CO2 enrichment studies.  Global Change Biology 22(2):889-902, doi: 10.1111/gcb.13102.

von Felten, S., Hattenschwiler, S., Saurer, M., and Siegwolf, R., 2007. Carbon allocation in shoots of alpine treeline conifers in a CO2 enriched environment. Trees-Structure and Function 21: 283-294.

Wagener, K. 1978. Total anthropogenic CO2 production during the period 1800-1935 from carbon-13 measurements in tree rings. Rad. and Environm. Biophys. 15: 101-111.

Wagner, R., Insinna, P.A., Götz, B., Junge, S., and Boettger, T., 2007. 13C discriminations of Pinus sylvestris vs. Pinus ponderosa at a dry site in Brandenburg (eastern Germany): 100-year growth comparison. Isotopes in Environmental and Health Studies 43/2: 117-128

Walcroft, A.S., Silvester, W.B., Grace, J.C., Carson, S.D. and Waring, R.H., 1996.  Effects of branch length on carbon isotope discrimination in Pinus radiata.  Tree Physiology 16: 281-286.

Walcroft, A.S., Silvester, W.B., Whitehead, D. and Kelliher, F.M., 1997.  Seasonal changes in stable carbon isotope ratios within annual rings of Pinus radiata reflect environmental regulation of growth processes.  Aust. J. Plant Physiol. 24: 57-68.

Walia, A., Guy, R.D. and White, B., 2010. Carbon isotope discrimination in western hemlock and its relationship to mineral nutrition and growth. Tree Physiology 30: 728-740.

Wang, W., Liu, X., An, W., Xu, G., and Zeng, X., 2012.  Increased intrinsic water-use efficiency during a period with persistent decreased tree radial growth in northwestern China: Causes and implications.  Forest Ecology and Management 275:14-22.

Wang, W.Z., Liu, X.H., Shao, X.M., Leavitt, S., Xu, G.B., An, W.L. and Qin, D.H., 2011.  A 200 year temperature record from tree ring δ13C at the Qaidam Basin of Tibetan Plateau after identifying the optimum method to correct for changing atmospheric CO2 and δ13C.  Journal of Geophysical Research 116, G04022.

Wang, W., Liu, X., Xu, G., Zeng, X., Wu, G., Zhang, X., and Qin, D., 2016. Temperature signal instability of tree-ring δ13C chronology in the northeastern Qinghai–Tibetan Plateau. Global and Planetary Change 139: 165-172, doi: 464 http://dx.doi.org/10.1016/j.gloplacha.2016.02.006 2016.02.006.

Ward, J.K., Dawson, T.E., and Ehleringer, J.R., 2002.  Responses of Acer negundo genders to interannual differences in water availability determined from carbon isotope ratios of tree ring cellulose.  Tree Physiology 22: 339-346.

Waring R.H. and Silvester, W.B. 1994.  Variation in foliar δ13C values within crowns of Pinus radiata trees.  Tree Physiology 14: 1203-1213.

Warren, C.R., McGrath, J.F. and Adams, M.A. 2001.  Water availability and carbon isotope discrimination in conifers. Oecologia 127: 476–86.

Waterhouse, J.S., Barker, A.C. and Carter, A.H.C., 2000.  Stable carbon isotopes in Scots pine tree rings preserve a record of flow of the river Ob.  Geophys. Res. Lett. 27: 3539-3532.

Waterhouse, J.S., Switsur, V.R., Barker, A.C., Carter, A.H.C., Hemming, D.L., Loader, N.J. and Robertson, I., 2004. Northern European trees show a progressive diminishing response to increasing atmospheric carbon dioxide concentrations.  Quaternary Science Reviews 23: 771-801.

Watmough, S.A., McNeely, R., and LaFleur, P.M., 2001. Changes in wood and foliar δ13C in sugar maple at Gatineau Park, Quebec, Canada.  Global Change Biology 7: 955-960.

Wieloch T, Ehlers I, Yu J, Frank D, Grabner M, Gessler A, Schleucher J (2018) Intramolecular 13C analysis of tree rings provides multiple plant ecophysiology signals covering decades. Scientific Reports 8:5048, DOI:10.1038/s41598-018-23422-2.

Wiesberg, L.H.G. and Tavares, T.M., 1987. The 13C/12C record in wood of palmtrees. Geochimica et Cosmochimica Acta 51: 1783-1786.

Wils, T.H.G., Robertson, I., Woodborne, S., Hall, G., Koprowski, M, and Eshetu, Z., 2016. Anthropogenic forcing increases the water-use efficiency of African trees. J. Quat. Sci. 31(4): 386–390.

Wilson, A.T. and Grinsted, M.J., 1977.  12C/13C in cellulose and lignin as paleothermometers.  Nature 265: 133-135.

Woodley E.J., Loader N.J., McCarroll D., Young G.H.F., Robertson I., Heaton T.H.E. and Gagen M.H., 2012. Estimating uncertainty in pooled stable isotope time-series from tree-rings. Chemical Geology 294/295:243—248.

Xu, G., Liu, X., Qin, D., Chen, T., An, W., Wang, W., Wu, G., Zeng, X., 2013.  Climate warming and increasing atmospheric CO2 have contributed to increased intrinsic water-use efficiency on the northeastern Tibetan Plateau since 1850.  Trees-Structure and Function 27:465-475.

Xu, G.B., Chen, T., Liu, X. H., Jin, L. Y., An, W.L., Wang, W.Z., 2011.  Summer temperature variations recorded in tree-ring δ13C values on the northeastern Tibetan Plateau, Theor. Appl. Climatol. 105: 51-63, DOI: 10.1007/s00704-010-0370-z.

Xu, Y., Li, W., Shao, X., Xu, Z., Nugroho, P., 2014.  Long-term trends in intrinsic water-use efficiency and growth of subtropical Pinus tabulaeformis Carr. and Pinus taiwanensis Hayatain central China. Journal of Soils and Sediments 14:917-927.

Yoder, B.J., Ryan, M.G., Waring, R.H., Schoettle, A.W. and Kaufmann, M.R., 1994.  Evidence of  reduced photosynthetic rates of old trees.  Forest Science 40:513-527.

Young, G.H.F., Bale, R.J., Loader, N.J., McCarroll, D., Nayling, N., and Vousden, N., 2012. Central England temperature since AD 1850: The potential of stable carbon isotopes in British oak trees to reconstruct past summer temperatures. Journal of Quaternary Science 27:606–614.

Young, G.H.F., McCarroll, D., Loader, N.J., and Kirchhefer, A.J., 2010. A 500-year record of summer near-ground solar radiation from tree-ring stable carbon isotopes.  Holocene 20: 315-324.

Yu, K.F., Zhao, J.X., Liu, T.S., Wang, P.X., Qian, J.L., Chen, T.G. 2004. Alpha-cellulose δ13C variation in mangrove tree rings correlates well with annual sea level trend between 1982 and 1999. Geophysical Research Letters 31, L11203, doi:10.1029/2004GL019450.

Yu, L., Rongmo, L. Fuqing, S. and Guisheng, T., 1990. δ13C analysis of tree rings from Mt. Qinling and its climatic implications. In: Environmental Geochemistry and Health, China Mineral and Geochemistry Society (Ed.), Guizhou Science and Technology Press, Guizhou, China, p. 12-14 (English abstract).

Zhang, J.W., Cregg, B.M. 1996. Variation in stable carbon isotope discrimination among and within exotic conifer species grown in eastern Nebraska, USA. Forest Ecology and Management 83: 181-187.

Zhang, J.W., Feng, Z., Cregg, B.M. and Shumann, C.M., 1997. Carbon isotopic composition, gas exchange, and growth of thee populations of ponderosa pine differing in drought tolerance. Tree Physiology 17: 461-466.

Zhang, J.W. and Marshall, J.D., 1995. Variation in carbon isotope discrimination and photosynthetic gas exchange among populations of Pseudotsuga menziesii and Pinus ponderosa in different environments. Functional Ecology 9: 402-412.

Zhang, X., Liu, X., Zhang, Q., Zeng, X., Xu, G., Wu, G., Wang, W., 2018. Species-specific tree growth and intrinsic water-use efficiency of Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris var. mongolica) growing in a boreal permafrost region of the Greater Hinggan Mountains, Northeastern China. Agricultural and Forest Meteorology 248:145–155.

Zhang, Y., Chen, T., An, L., Li, Y., 2007. The variations of stable-carbon isotope ratios in Qilian juniper in northwestern China. Environmental Geology 52: 131-136.

Zhao, X.-Y., Qian, J.-L., Wang, J., He, Q.-Y., Wang, Z.-L., Chen, C.-Z., 2006. Using a tree ring δ13C annual series to reconstruct atmospheric CO2 concentration over the past 300 years. Pedosphere 16: 371-379.

Zhenghua, L., Rongmo, L, Zhisheng, A. And Yu, L., 1995. Annual variations of 13C in tree rings from Huangling of Shaanxi province and their climatic implications. Scientia Geologica Sinica 1: 161-167.

 

δ15N in Tree Rings

Bukata, A.R., and Kyser, T.K., 2005. Response of the Nitrogen Isotopic Composition of Tree-Rings Following Tree-Clearing and Land-Use Change.  Environmental Science and Technology 39: 7777-7783.

Bukata, A.R., and Kyser, T.K., 2007. Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles. Environ Sci Technol. 41(4):1331-8

Caceres, M.L., Mizota, C., Yamanaka, T., Nobori, Y., 2011. Effects of pre-treatment on the nitrogen isotope composition of Japanese black pine (Pinus thunbergii) tree-rings as affected by high N input. Rapid Commun. Mass Spectrom. 25(21): 3298-3302.

Choi, W.J., Lee, S.-M., Chang, S.X., and Ro, H.-M., 2005. Variations of δ13C and δ15N in Pinus Densiflora tree-rings and their relationship to environmental changes in eastern Korea. Water, Air, and Soil Pollution 164: 173-187.

Couto-Vázquez, A., and  González-Prieto, S. J., 2009.  Effects of climate, tree age, dominance and growth on δ15N in young pinewoods.  Trees-Structure and Function 24:507-514.

Doucet, A., Savard, M.M., Bégin, C., Smirnoff, A., 2011.  Is wood pre-treatment essential for tree-ring nitrogen concentration and isotope analysis?  Rapid Commun. Mass Spectrom. 25(4): 469-75.

Doucet, A., Savard, M.M., Bégin, C., Smirnoff, A., 2012. Tree-ring δ15N values to infer air quality changes at regional scale. Chemical Geology 320/321:9–16.

Elhani, S., Guehl, J.-M., Nys, C., Picard, J.-F., and Dupouey, J.-L., 2005. Impact of fertilization on tree-ring δ15N and δ13C in beech stands: a retrospective analysis. Tree Physiology 25: 1437-1446.

Elhani, S., Lema, B.F., Zeller, B., Brechet, C., Guehl, J.-M., and Dupouey, J.-L., 2003. Inter-annual mobility of nitrogen between beech rings: A labeling experiment.  Ann. For. Sci. 60: 503-508.

Guerrieri, R., Mencuccini, M., Sheppard, L.J., Saurer, M., Perks, M., Levy, P., Sutton, M.A., Borghetti, M., and Grace, J., 2011. The legacy of enhanced N and S deposition as revealed by the combined analysis of δ13C, δ18O and δ15N in tree rings. Global Change and Biology 17:1946-1962.

Guerrieri, R., Siegwolf, R.T.W., Saurer, M., Ripullone, F., Mencuccini, M., and Borghetti, M., 2010.  Anthropogenic NOx emissions alter the intrinsic water-use efficiency (WUEi) for Quercus cerris stands under Mediterranean climate conditions. Environmental Pollution 158:2841-2847.

Hart, S.C. and Classen, A.T. 2003.  Potential for assessing long-term dynamics in soil nitrogen availability from variations in δ15N of tree rings.  Isotopes Environ. Health Stud. 39: 15-28.

Hietz, P., Dunisch, O., Wanek, W., 2010.  Long-term trends in nitrogen isotope composition and nitrogen concentration in Brazilian rainforest trees suggest changes in nitrogen cycle. Environ. Sci. Technol. 44:1191-6.

Huang, Z., Liu, B., Davis, M., Sardans, J., Peńuelas, J., and Billings, S., 2016. Long-term nitrogen deposition linked to reduced water use efficiency in forests with low phosphorus availability. New Phytologist 210:431-442, doi:10.1111/nph.13785.

Jennings, K., Guerrieri, R., Vadeboncoeur, M., and Asbjornsen, H., 2016. Response of Quercus velutina growth and water use efficiency to climate variability and nitrogen fertilization in a temperate deciduous forest in the northeastern U.S. Tree Physiology 36(4):428-443.

McLauchlan, K.K.,  Craine, J.M., Oswald, W.W., Leavitt, P.R., Likens, G.E., 2007. Changes in nitrogen cycling during the past century in a northern hardwood forest. Proc. Natl. Acad. Sci. 107:7466–7470.

Mizota, C., Lopez Caceres, M.L., Yamanaka, T., Nobori, Y., 2011.  Differential response of two Pinus spp. to avian nitrogen input as revealed by nitrogen isotope analysis for tree rings.  Isotopes Environ. Health Stud. 47(1): 62-70.

Peńuelas, J., and Estiarte, M., 1997. Trends in plant carbon concentration and plant demand for N throughout this century. Oecologia 109:69–73.

Poulson, S.R., Chamberlain, P.C., and Friedland, A.J. 1995. Nitrogen isotope variation of tree rings as a potential indicator of environmental change. Chemical Geology (Isotope Geoscience Section) 125: 307-315.

Saurer, M., Cherubini, P., Ammann, M., De Cinti, B. and Siegwolf, R., 2004.  First detection of nitrogen from NOx in tree rings: A 15N/14N study near a motorway.  Atmospheric Environment 38: 2779-2787.

Saurer, M., Siegwolf, R.T.W., 2007. Human impacts on tree-ring growth reconstructed from stable isotopes.  In Stable Isotopes as Indicators of Ecological Change, Dawson, T.E., Siegwolf, R.T.W. (eds.),  Terrestrial Ecology, Vol. 1, pp. 49-62, Elsevier.

Savard, M.M., Begin, C., Smirnoff, A., Marion, J. and Rioux-Paquette, E., 2009. Tree-ring nitrogen isotopes reflect anthropogenic NOx emissions and climatic effects. Environmental Science and Technology 43:604-609.

Sheppard, P.R. and Thompson, T.L., 2000. Effect of extraction pretreatment on radial variation of nitrogen concentration in tree rings. Journal of Environmental Quality 29: 2037-2042.

Silva, L.C.R., Gómez-Guerrero, A., Doane, T.A., and Horwath, W.R., 2015. Isotopic and nutritional evidence for species- and site-specific responses to N deposition and elevated CO2 in temperate forests. J. Geophys. Res. Biogeosci. 120:1110–1123, doi:10.1002/2014JG002865.

Tomlinson, G., Siegwolf, R.T., Buchmann, N., Schleppi, P., Waldner, P., and Weber, P, 2014.  The mobility of nitrogen across tree-rings of Norway spruce (Picea abies L.) and the effect of extraction method on tree-ring δ15N and δ13C values.  Rapid Communications in Mass Spectrometry 28(11):1258-64.

van der Sleen, P., Vlam, M., Groenendijk, P., Anten, N.P., Bongers, F., Bunyavejchewin, S., Hietz, P., Pons, T.L., Zuidema, P.A., 2015.  15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods. Frontiers in Plant Sci. 6:229.

 

δ34S in Tree Rings

Giesemann, A., Hofmann, F., Schlechtriemen, U. and Jung, K. (2005) An attempt to evaluate sulphur (S) and nitrogen (N) inputs into a forest ecosystem retrospectively by means of stable N and S isotope analysis in tree rings. Abhandlungen und Berichte des Naturkundemuseums Görlitz 76, 101–115.

Kawamura, H., Matsuoka, N., Momoshima, N., Koike, M., and Takashima, Y., 2006. Isotopic evidence in tree rings for historical changes in atmospheric sulfur sources.  Environmental Science & Technology 40(18): 5750-5754. 

Novak, M., Jackova, I., Zemanova, L., Fottova, D., Rechova, E., Buzek, F., and Erbanova, L., 2009. Controls on sulfur content in tree rings of Norway spruce and European beech at a heavily polluted site/  Geochemical Journal 43: e1-e4.

Yang, W., Spencer, R.J. and Krouse, H.R. 1996.  Stable sulfur isotope hydrogeochemical studies using desert shrubs and tree rings, Death Valley, California, USA. Geochimica et Cosmochimica Acta 60: 3015-3022.