Tree Ring Isotopes- Ecology and Environment
(Leavitt- August 2019) Bibliography Wood Anatomy and
Dendrochronology Cook, E.R. and Kairiukstis, Fritts, H.C. 1976. Tree Rings and Climate. Academic Press, Fritts, H.C., Vaganov, E.A., Sviderskaya, I.V. and Shashkin, A.V.
1991. Climatic variation and tree-ring
structure in conifers: empirical and mechanistic models of tree-ring width,
number of cells, cell size, cell-wall thickness and wood density. Climate Research 1: 97-116. Panshin, A.J. and de Zeeuw, C. 1980. Textbook of Wood Technology.
Schweingruber, F.H. 1987. Tree Rings: Basic Applications to
Dendrochronology. D. Reidel
(Kluwer), Stokes, M.A. and Smiley, T.L. 1996.
An Introduction to Tree-Ring
Dating. Vaganov, E.A., Hughes, M.K. and Shashkin, A.V., 2006. Growth
Dynamics of Tree Rings: An Image of Past and Future Environments.
Springer, Overviews- Isotopes in Tree Rings Edwards, T.W.D. 1993.
Interpreting past climate from stable isotopes in continental organic
matter. IN Climate Change in Continental Isotopic Records, Swart, P.K.,
Lohmann, K.C., McKenzie, J., and Savin, S. (eds.), American Geophysical Epstein, S. and Krishnamurthy, R.V. 1990. Environmental
information in the isotope record in trees. Phil. Trans. R. Soc. Lond.
A330: 427-439. Francey, R.J. and Farquhar, G.D., 1982. An explanation of 13C/12C
variations in tree rings. Nature
297: 28-31. Gagen,
M., McCarroll, D., Loader, N.J and Robertson, I., 2010. Stable isotopes in
dendroclimatology: Moving beyond ‘potential’.
IN Dendroclimatology Progress
and Prospects, Hughes, M.K., Swetnam, T.W. and Diaz, H.F. (eds.),
Springer Verlag, pp. 147-172. ISBN:
978-1-4020-4010-8, DOI: 10.1007/978-1-4020-5725-0 6. Gray, J. 1981.
The use of stable-isotope data in climate reconstruction. IN Climate
and History, Wigley, T.M.L., Ingram, M.J. and Farmer, G. (eds.), Leavitt, S.W. 1987.
Stable-carbon isotopes in tree rings as environmental indicators. IN The
Practical Application of Trace Elements and Isotopes to Environmental
Biogeochemistry and Mineral Resources Evaluation, Hurst, R.W., Davis,
T.E. and Augustithis, S.S. (eds), Theophrastus Publications, S.A., Athens,
pp. 61-74. Leavitt, S.W. 1992.
Isotopes and trace elements in tree rings. LUNDQUA Report 34: 182-190. Leavitt, S.W. 1993.
Environmental information from 13C/12C ratios in
wood. IN Climate Change in Continental Isotopic Records, Swart, P.K.,
Lohmann, K.C., McKenzie, J., and Savin, S. (eds.), American Geophysical
Union, Geophysical Monograph 78:
325-331. Leavitt, S.W., 2010.
Tree-ring C-H-O isotope variability and sampling. Science of the Total Environment 408: 5244–5253. Lipp, J. and Trimborn, P. 1991. Long-term records
and basic principles of tree-ring isotope data with emphasis on local
environmental conditions. Paläoklimaforschung 6: 105–117. Loader, N.J., McCarroll,
D., Gagen, M., Robertson, I., Jalkanen, R., 2007. Extracting
climatic information from stable isotopes in tree rings. In Stable
Isotopes as Indicators of Ecological Change, Dawson,T.E., Siegwolf,
R.T.W. (eds.), Terrestrial Ecology,
Vol. 1, pp. 25-48, Elsevier. Long, A. 1982.
Stable isotopes in tree rings.
IN Climate from Tree Rings,
Hughes, M.K., Kelly, P.M., (eds.), Pilcher, J.R. and LaMarche, Jr., V.C.
(eds), Cambridge University Press, Cambridge, pp. 13-18. Managave, S. R., Ramesh, R., 2012. Isotope dendroclimatology: a review with a
special emphasis on tropics. In Handbook
of Environmental Isotope Geochemistry (ed. Baskaran, M.), Springer, The
Netherlands, pp. 811-834. McCarroll, D. and Loader, N.J., 2006. Isotopes in tree rings. IN Isotopes
in Palaeoenvironmental Research (Developments in Paleoenvironmental
Research Series), M.J. Leng (ed.), Springer, The McCarroll, D. and Loader, N.J., 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23: 771-801. Ramesh, R., Bhattacharya, S.K. and Gopalan, K.
1986. Stable isotope systematics in
tree cellulose as palaeoenvironmental indicators--a review. J. Geol. Soc. India 27: 154-167. Robertson, Sternberg, L.S.L., 2009. Oxygen stable isotope ratios
of tree-ring cellulose: the next phase of understanding. New Phytologist
181: 553–562. Wigley, T.M.L. 1982.
Oxygen-18, carbon-13, and carbon-14 in tree rings. IN Climate
from Tree Rings, Hughes, M.K., Kelly, P.M., Pilcher, J.R. and LaMarche,
Jr., V.C. (eds), Cambridge University Press, Cambridge, pp. 18-21. Isotope Modelling Berninger,
F., Sonninen, E., Aalto, T. and Lloyd, J.
2000. Modeling 13C
discrimination in tree rings. Global Biogeochemical Cycles 14: 213-223. Churakova (Sidorova), O.V., Shashkin, A.V., Siegwolf,
R.T.W., Spahni, R., Launois, T., Saurer, M., Bryukhanova, M.V., Benkova,
A.V., Kuptsova, A.V., Peylin, P., Vaganov, E.A., Masson-Delmotte, V, and
Roden, J., 2015. Application of
eco-physiological models to tree-ring parameters of
δ13C and δ18O measured in Siberian larch
tree-rings. Dendrochronologia, DOI: 10.1016/j.dendro.2015.12.008. Gessler, A., Ferrio, J.P., Hommel, R., Treydte, K.,
Werner, R.A., Monson, R.K., 2014.
Stable isotopes in tree rings: Towards a mechanistic understanding of
isotope fractionation and mixing processes from the leaves to the wood. Tree
Physiology 34:796–818. Hemming, D., Fritts, H.,
Leavitt, S.W., Wright, W., Long, A., and Shashkin, A., 2001. Modelling tree-ring d13C. Dendrochronologia 19(1): 23-38. Vaganov, E.A., Anchukaitis, K.J., Evans, M.N., 2011.
How well understood are the processes that create dendroclimatic records? A
mechanistic model of the climatic control on conifer tree-ring growth dynamics.
In: Hughes M, Swetnam T, Diaz H (eds) Dendroclimatology. Developments in
Paleoenvironmental Research, vol. 11, pp. 37–75. Springer, Dordrecht. Preparation/Analysis Anchukaitis, K.J., Evans, M.N., Lange, T., Smith,
D.R., Leavitt, S.W., and Schrag, D.P., 2008. Purity and isotopic results from
a rapid cellulose extraction method. Analytical Chemistry 80(6): 2035-2041. Au, R., and Tardif, J.C., 2009. Chemical pretreatment of Thuja occidentalis tree-rings:
implications for dendroisotopic studies. Canadian Journal of Forest
Research 39: 1777-1784. Boettger,
T., Haupt, M., Knöller, K., Weise, S.M., Waterhouse, J.S., Rinne, K.T.,
Loader, N.J., Sonninen, E., Jungner, H., Masson-Delmotte, V., Stievenard, M.,
Guillemin, M.-T., Borella,
S., Leuenberger, M, Saurer, M. 1999. Analysis of δ18O in tree rings:
Wood-cellulose comparison and method dependent sensitivity. J. of Geophysical Research 104: 19267-19273. Borella,
S., Leuenberger, M, Saurer, M. and Siegwolf, R. 1998. Reducing uncertainties
in δ13C analysis of tree rings: pooling, milling, and
cellulose extraction. J. of Geophysical Research 103: 19,519-19,526. Brendel,
O., Iannetta, P.P.M. and Stewart, D. 2000.
A rapid and simple method to isolate pure alpha-cellulose. Phytochemical
Analysis 11: 7-10. Cullen,
L.E., and Grierson, P.F., 2006. Is
cellulose extraction necessary for developing stable carbon and oxygen
isotopes chronologies from Callitris
glaucophylla? Palaeogeography, Palaeoclimatology, Palaeoecology 236: 206-216. Cullen,
L.E. and Macfarlane, C., 2005. Comparison of cellulose extraction methods for
analysis of stable-isotope ratios of carbon and oxygen in plant material. Tree
Physiology 25: 619-625. DeNiro,
M.J. 1981. The effects of different methods of preparing cellulose nitrate on
the determination of the D/H ratios of non-exchangeable hydrogen of
cellulose. Earth and Planetary Science Lett. 54: 177-185. Feng, X., Krishnamurthy,
R.V. and Epstein, S. 1993.
Determination of D/H ratios of nonexchangeable hydrogen in cellulose:
A method based on the cellulose water exchange reaction. Geochimica et
Cosmochimica Acta 57:
4249-4256. Filot, M.S., Leuenberger,
M., Pazdur, A., and Boettger, T., 2006.
Rapid online equilibration method to determine the D/H ratios of
non-exchangeable hydrogen in cellulose. Rapid Commun. Mass Spectrom. 20: 3337-3344. Gaudinski, J.B., Dawson,
T.E., Quideau, S., Schuur, E.A.G., Roden, J.S., Trumbore, S.E., Sandquist,
D.R., Oh, S.-W., and Wasylishen. R.E., 2005. Comparative Analysis of
Cellulose Preparation Techniques for Use with 13C, 14C,
and 18O Isotopic Measurements. Anal. Chem. 77: 7212-7224. Harlow, B.A., Marshall,
J.D. and Robinson, A.P., 2006. A multi-species comparison of δ13C
from whole wood, extractive-free wood and holocellulose. Tree Physiology
26: 767-774. Haupt, M., and Boettger,
T., 2006. Microwave-supported
preparation of alpha-cellulose for analysis of delta 13C in tree
rings. Anal. Chem. 78:
7248-7252 Hoper, S.T., McCormac,
F.G., Hogg, A.G., Higham, T.F.G. and Head, M.J., 1998. Evaluation of wood pretreatments on oak and
cedar. Radiocarbon 40: 45-50. Knöller, K., Boettger, T.,
Weise, S.M. and Gehre, M., 2005. Carbon
isotope analyses of cellulose using two different on-line techniques
(elemental analysis and high-temperature pyrolysis) – a comparison. Rapid
Communications in Mass Spectrometry 19:
343-348. Knöller, K., Boettger, T.,
Haupt, M. and Weise, S.M., 2007. Routine hydrogen isotope
measurement of cellulose nitrate by high-temperature pyrolysis – reference
materials and precision. Rapid Communications in Mass Spectrometry 21: 3085-3092. Krishnamurthy, R.V. and Machavaram, M. 1998. Hydrogen
isotope exchange in thermally stressed cellulose. Chemical Geology (Isotope
Geosciemce Section) 152: 85-96 Laumer, W., Andreu, L., Helle, G., Schleser, G.
H., Wieloch, T. and Wissel, H., 2009. A novel approach for the
homogenization of cellulose to use micro-amounts for stable isotope analyses.
Rapid Communications in Mass Spectrometry 23: 1934-1940. Leavitt, S.W. and Danzer, S.R. 1993. Method for batch processing small wood
samples to holocellulose for stable-carbon isotope analysis. Analytical Chemistry 65: 87-89. Loader, N.J.
and Buhay, W.M. 1999. Rapid catalytic oxidation of CO to CO2-on
the development of a new approach to on-line oxygen isotope analysis of
organic matter. Rapid Communication in Mass Spectrometry 13: 1828-1832. Loader, N.J., Robertson, Loader, N.J., Robertson,
Macfarlane, C., Richard, B., Quilčs, F.,
Carteret, C. and Brendel, O., 2014.
Infrared spectroscopy and multivariate analysis to appraise
α-cellulose extracted from wood for stable carbon isotope measurements. Chemical
Geology 381:168-179. Rinne, K.T., Boettger T.,
Loader, N.J., Robertson, Sauer, P.E. and
Sternberg, L.d.S.L.O., 1994. Improved
method for the determination of the oxygen isotopic composition of
cellulose. Analytical
Chemistry 66:
2409-2411. Saurer, M., Robertson, Saurer, M. and Siegwolf, R., 2004. Pyrolysis techniques
for oxygen isotope analysis of ellulose.
IN Handbook of Stable Isotope
Analytical Techniques, pp. 497-506. Sheu, D.D. and Chiu, C.H. 1995. Evaluation of cellulose
extraction procedures for stable carbon isotope measurement in tree ring
research. Intern. J. Environ. Anal. Chem. 59: 59-67. Sternberg, L.S.L. 1989.
Oxygen and hydrogen isotope measurements in plant cellulose
analysis. IN Plant Fibres. Modern Methods of Plant Analysis V. 10 (ed. H.F.
Linskens and J.F. Jackson), pp. 89-99. Springer-Verlag. Verheyden, A., Roggeman, M., Bouillon, S., Elskens, M.,
Beeckman, H., and Koedam, N., 2005. Comparison between δ13C of α-cellulose
and bulk wood in the mangrove tree Rhizophora
mucronata: Implications for dendrochemistry . Chemical Geology 219: 275-282. Wieloch, T., Helle, G.,
Heinrich, I., Voigt, M., and Schyma, P., 2011. A novel device for batch-wise isolation of
α-cellulose from small-amount wholewood samples. Dendrochronologia
29(2):115-117. Young, G.H.F., Loader,
N.J., and McCarroll, D., 2011. A large scale comparative study of stable
carbon isotope ratios determined using on-line combustion and low-temperature
pyrolysis techniques. Palaeogeography, Palaeoclimatology, Palaeoecology
300:23–28. doi:http://dx.doi.org/10.1016/j.palaeo.2010.11.018. δD and/or δ18O in Tree Rings An, W., Liu, X.,
Leavitt, S.W., Ren, J., Xu, G., Zeng, X., Wang, W., Qin, D., and Ren, J.,
2013. Relative humidity history on the
Batang–Litang Plateau of western China since 1755 reconstructed from
tree-ring δ18O and δD. Climate Dynamics 42:2639–2654, DOI 10.1007/s00382-013-1937-z. An, W., Liu, X.,
Leavitt, S.W., Sun, W., Wang, W., Wang, Y., Xu, G., Chen, T., Ren, J., and
Qin, D., 2012. Specific climatic signals recorded in earlywood and latewood
δ18O of tree rings in southwestern China. Tellus B 64(1):18703, http://dx.doi.org/10.3402/tellusb.v64i0.18703. Anchukaitis,
K.J. and Evans, M.N., 2010. Tropical cloud forest climate variability and the
demise of the Monteverde golden toad. Proceedings
of the National Academy of Science U.S.A. 107(11):5036-5040. Anchukaitis,
K.J., M.N. Evans, N.T. Wheelwright, and D.P. Schrag, 2008. Stable isotope chronology and climate
signal calibration in neotropical cloud forest trees, Journal of
Geophysical Research 113:
G03030, doi:10.1029/2007JG000613. Anderson,
W.T., Bernasconi, S.M., McKenzie, J.A., Saurer, M. and Schweingruber, F.,
2002. Model evaluation for
reconstructing the oxygen isotopic composition in precipitation from tree
ring cellulose over the last century. Chemical
Geology 182: 121-137. Andreu -Hayles, L.,
Ummenhofer, C.C., Barriendos, M., Schleser, G.H., Helle, G., Leuenberger, M.,
Gutiérrez, E., and Cook, E.R., 2017. 400 Years of summer hydroclimate from
stable isotopes in Iberian trees, Climate Dynamics 49(1): 143-161, doi:
10.1007/s00382 -016 -33323332-z. Augusti, A., Betson,
T.R., and Schleucher, J., 2006.
Hydrogen exchange during cellulose synthesis distinguishes climatic
and biochemical isotope fractionations in tree rings. New Phytologist 172: 490-499. Augusti, A., Betson,
T.R. and Schleucher, J., 2008.
Deriving correlated climate and physiological signals from deuterium
isotopomers in tree rings. Chemical
Geology 252:1-8. Augusti, A., and
Schleucher, J., 2007. The ins and outs
of stable isotopes in plants. New
Phytologist 174:473–475. Ballantyne, A.P.,
Baker, P.A., Chambers, J.Q., Villalba, R., and Argollo, J., 2010. Regional
differences in South American monsoon precipitation inferred from the growth
and isotopic composition of tropical trees. Earth Interactions 15:1-35, doi:10.1175/2010EI277.1. Barbour, M.M.,
Andrews, T.J., and Farquhar, G.D., 2001. Correlations between oxygen isotope
ratios of wood constituents of Quercus and Pinus samples from
around the world. Australian Journal of Plant Physiology 28: 335-348. Battipaglia,
G., Jäggi, M., Saurer, M., Siegwolf, R.T.W. and Cotrufo, M.F., 2008. Climatic
sensitivity of δ18O in the wood and cellulose of tree
rings: Results from a mixed stand of Acer pseudoplatanus and Fagus sylvatica L. Palaeogeography,
Palaeoclimatology, Palaeoecology 261:193–202. Battipaglia, G., Maya, J., Saurer, M., Siegwolf,
R.T.W., Francesca Cotrufo, M., 2008. Climatic sensitivity of δ18O
in the wood and cellulose of tree rings: Results from a mixed stand of Acer pseudoplatanus L. and Fagus sylvatica L. Palaeogeography,
Palaeoclimatology, Palaeoecology 261(1–2):193-202.
Berkelhammer, M., and Stott, L. D.,
2008. Recent and dramatic changes in Pacific
storm trajectories recorded in δ18O from bristlecone pine
tree-ring cellulose. Geochemistry, Geophysics, Geosystems 9(4), Q04008, doi:10.1029/2007GC001803. Berkelhammer, M., and Stott, L. D.,
2009. Modeled and observed intra-ring δ18O
cycles within late Holocene bristlecone pine tree samples. Chemical Geology 264:13–23. Berkelhammer,
M., and Stott, L. D., 2011. Correction
to “Recent and dramatic changes in Pacific storm trajectories as recorded in
the δ18O of Bristlecone Pine tree ring cellulose”. Geochemistry,
Geophysics, Geosystems 12,
Q09002, doi:10.1029/2011GC003765. Brienen,
R.J.W., Helle, G., Pons, T.L., Guyot, J.L., and Gloor, M., 2012. Oxygen
isotopes in tree rings are a good proxy for Amazon precipitation and El
Nińo-Southern Oscillation variability. Proceedings of the National Academy
of Sciences 109(42):16957-16962. Buhay,
W.M. and Edwards, T.W.D., 1995. Climate in Buhay,
W.M., Edwards, T.W.D. and
Aravena, R. 1996. Evaluating kinetic fractionation factors used
for ecologic and paleoclimatic reconstructions from oxygen and hydrogen
isotope ratios in plant water and cellulose. Geochimica
et Cosmochimica Acta.60: 2209-2218. Burk, R.L. and Stuiver,
M., 1981. Oxygen
isotope ratios in trees reflect mean annual temperature and humidity. Science 211: 1417-1419. Busch,
D., Ingraham, N.L. and Smith, S.D. 1992. Water uptake in woody riparian
phreatophytes of the southwestern Csank,
A.Z., Patterson, W.P., Eglington, B.M., Rybczynski, N., Basinger, J.F., 2011.
Climate variability in the Early Pliocene Arctic: Annually resolved evidence
from stable isotope values of sub-fossil wood, Ellesmere Island, Canada. Palaeogeography, Palaeoclimatology,
Palaeoecology 308: 339-349. Cullen,
L.E. and Grierson, P.F. 2006. Is cellulose extraction necessary for
developing stable carbon and oxygen isotopes chronologies from Callitris glaucophylla? Paleogeography, paleoclimatology,
Paleoecology 236: 206-216. DeNiro, M.J. and Cooper, L.W. 1989.
Post-photosynthetic modification of oxygen isotope ratios of carbohydrates in the
potato: implications for paleoclimatic reconstruction based upon isotopic
analysis of wood cellulose. Geochimica et Cosmochimica
Acta. 53:
2573-2580. DeNiro, M.J. and
Epstein, S. 1979. Relationship
between the oxygen isotope ratios of terrestrial plant cellulose, carbon
dioxide, and water. Science 204: 51-53. Dubois, A.D. and Dubois, A.D. and Edwards, T.W.D. 1990. New contribution to isotope
dendroclimatology from studies of plants. Geochimica et Cosmochimica Acta
54: 1843-1844. Edwards, T.W.D. and Fritz, P. 1986. Assessing meteoric water composition and
relative humidity from 18O and 2H in wood cellulose:
paleoclimatic implications for southern Ehleringer, J.R. and Epstein, S., 1995. The isotopic climate records in the
Alleröd-Břlling-Younger Dryas and post Younger Dryas events. Global
Biogeochemical Cycles 9:
557-563. Epstein, S., Xu, X. and Epstein,
S. and Yapp, C.J. 1976. Climatic implications of the D/H ratio of hydrogen in
C-H groups in tree cellulose. Earth and Planetary Science Letters 30: 252-261. Epstein, S., Thompson, P. and Yapp, C.J. 1977. Oxygen and hydrogen isotopic ratios in
plant cellulose. Science 198: 1209-1215. Epstein, S., Yapp, C.J. and Hall, J.H. 1976. The determination of the D/H ratio of
non-exchangeable hydrogen in cellulose extracted from aquatic and land
plants. Earth Plant. Sci.Lett. 30: 241-251. Evans, M.N. and D.P.
Schrag, 2004. A stable isotope-based approach to tropical dendroclimatology. Geochim.
et Cosmochim. Acta 68(16): 3295-3305, DOI: 10.1016/j.gca.2004.01.006 Feng, X., Cui, H., Tang, K. and Conkey, L.E., 1999.
Tree-ring δD as an indicator of Asian
Monsoon Intensity. Quaternary
Research 51: 262-266. Feng, X. and Epstein, S. 1994. Climatic implications of an 8000-year
hydrogen isotope time series from bristlecone pine trees. Science 265: 1079-1081. Feng, X., Reddington, A.L., Faiia, A.M., Posmentier,
E.S., Shu, Y. and Xu, X., 2007. The
changes in North American atmospheric circulation patterns indicated by wood
cellulose. Geology 35(2):
163–166; Friedman, I., Gessler, A., Brandes, E., Keitel, C., Boda, S., Kayler,
Z.E., Granier, A., Barbour, M., Farquhar, G.D., Treydte, K., 2013. The oxygen
isotope enrichment of leaf-exported assimilates-Does it always reflect lamina
leaf water enrichment? New Phytologist 200:144-157. Gray, J. and Song, S.J. 1984. Climatic implications of the natural variations
of D/H ratios in tree ring cellulose. Earth
and Planetary Science Letters 70:
129-138. Gray, J. and Thompson, P. 1976. Climatic information from 18O/16O
ratios of cellulose in tree rings. Nature
262: 481-482. Gray, J. and
Thompson, P. 1978. Reply to Wigley, T.M.L., Gray, B.M. and Kelly, P.M. 1978.
Climatic interpretation of δ18O and δD in tree rings. Nature 271: 94. Grießinger, J., Bräuning, A., Helle, G., Thomas, A.,
and Schleser, G., 2011. Late Holocene Asian
summer monsoosanon variability reflected by δ18O in
tree-rings from Tibetan junipers. Geophysical
Research Letters 38: L03701,
doi:10.1029/2010GL045988. Grinsted, M.J. and Guerrieri,
R., Siegwolf, R.T.W., Saurer, M., Ripullone, F., Mencuccini, M., and
Borghetti, M., 2010. Anthropogenic NOx
emissions alter the intrinsic water-use efficiency (WUEi) for Quercus cerris stands under
Mediterranean climate conditions. Environmental Pollution 158:2841-2847. Hill
D. J.; Csank A. Z.; Dolan A. M., 2012. Pliocene climate variability: Northern
Annular Mode in models and tree-ring data. Palaeogeography, Palaeoclimatology,
Palaeoecology 309: 118-127,
DOI: 10.1016/j.palaeo.2011.04.003. Hill,
Jäggi, M., Saurer, M., Fuhrer, J. and Siegwolf, R. 2003. Seasonality
of δ18O in needles and wood of Picea abies. New
Phytologist 158: 51–59. Jahren, A.H. and Sternberg,
L.S.L., 2002. Eocene meridional weather patterns reflected in the oxygen
isotopes of arctic fossil wood. GSA
Today 1: 4-9. Jahren, A.H. and Sternberg,
L.S.L., 2003. Humidity
estimate for the middle-Eocene Arctic rainforest: Geology 31: 463-466. Kahmen, A., Sachse, D., Arndt, S.K., Tu, K.P.,
Farrington, H., Vitousek, P.M., and Dawson, T.E., 2011. Cellulose δ18O
is an index of leaf-to-air vapor pressure difference (VPD) in tropical
plants. Proceedings of the National Academy of Sciences 108:1981-1986. Kress, A., Saurer, M., Buntgen, U., Treydte, K.S.,
Bugmann, H. and Siegwolf, R.T.W., 2009. Summer temperature dependency of
larch budmoth outbreaks revealed by Alpine tree-ring isotope chronologies. Oecologia
160(2): 353-365. Krishnamurthy, R.V. and Epstein, S. 1985. Tree ring D/H ratio from Labotka, D.M., Grissino-Mayer, H.D., Mora, C.I., and
Johnson, E.J., 2015. Patterns of moisture source variability and vlimate
oscillations in the Southeastern United States: A four century seasonally
resolved tree-ring oxygen isotope record. Climate Dynamics 46:2145–2154, doi:
10.1007/s00382-015-2694-y. Labuhn, I., Daux, V., Girardclos, O., Stievenard, M.,
Pierre, M., and Masson-Delmotte, V., 2016. French summer droughts since 1326
CE: A reconstruction based on tree ring cellulose δ18O. Climate
of the Past 12:1101–1117, doi:10.5194/cp-12-1101-2016. Labuhn, I., Daux, V., Pierre, M., Stievenard, M.,
Girardclos, O., Féron, A., Genty, D., and Masson-Delmotte, V., Mestre, O.,
2014. Tree age, site and climate controls on tree ring cellulose δ18O:
A case study on oak trees from south-western France. Dendrochronologia
32:78–89
doi:10.1016/j.dendro.2013.11.001. Li, Q., Nakatsuka T., Kawamura K., Liu Y. and Song
H.M., 2011a. Hydroclimate variability in the North China Plain and its link
with El Nino-Southern Oscillation since 1784 AD: Insights from tree-ring
cellulose δ18O. Journal of Geophysical Research
116(D22), D22106. Li, Q., Nakatsuka T., Kawamura K., Liu Y, and Song
H.M., 2011b. Regional hydroclimate and precipitation δ18O
from different tree species in semi-arid Northern China. Chemical Geology
282: 19-28. Lipp, J., Trimborn, P. and Becker, B., 1992. Rhythmic δD
fluctuations in the tree-ring latewood cellulose of spruce trees (Picea abies L.). Dendrochronologia 10: 9-22. Lipp, J., Trimborn, P., Edwards, T.W.D., Waisel, Y. and
Yakir, D. 1986. Climatic effects on
the 18O and 13C of cellulose in the desert tree Tamarix jordanis. Geochimica et Cosmochimica Acta 60: 3305-3309. Lipp, J., Trimborn, P., Graff, W. and Becker, B.
1993. Climatic significance of D/H
ratios in the cellulose of late wood in tree rings from spruce (Picea abies L.). IN Proceedings
International Symposium on Applications of Isotopic Techniques in Studying
Past and Current Environmental Changes in the Hydrosphere, 19-23 April
1993, IAEA-SM-329/44, Vienna, pp. 395-405. Liu, W., Feng, X., Liu,
Y., Zhang, Q., An, Z., 2004. δ18O
values of tree rings as a proxy of monsoon precipitation in arid Northwest
China. Chemical Geology 206:
73-80. Liu, Y., Cobb, K.M.,
Song, H., Li, Q., Li, C.Y., Nakatsuka, T., An, Z., Zhou, W., Cai, Q., Li, J.,
Leavitt, S.W., Sun, C., Mei, R., Shen, C.-C., Chan, M.-H., Sun, J., Yan, L.,
Lei, Y., Ma, Y., Li, X., Chen, D., Linderholm, H.W., 2017. Recent enhancement of central Pacific El
Nińo variability relative to last eight centuries. Nature Communications 8, doi:10.1038/ncomms15386.
Liu, Y., Cai, Q., Liu,
W., Yang, Y., Sun, J., Song, H. and Li, X., 2008. Monsoon precipitation variation recorded by
tree-ring δ18O in arid Northwest China since AD 1878. Chemical Geology 252:56-61 Luckman, B. and Gray, J.
1990. Oxygen isotope ratios from tree rings containing compression wood. Quaternary
Research 33(1): 117-121. Luckman, B.H., Luo, Y. and Sternberg, L. 1991. Deuterium heterogeneity in starch and
cellulose nitrate of Managave, SR., Sheshshayee, M., Bhattacharyya, A., and
Ramesh, R., 2010. Intra-annual
variations of teak cellulose δ18O in Kerala, India:
implications to the reconstruction of past summer and winter monsoon rains. Climate
Dynamics: 37(3-4):555-567. Managave, S.R., Sheshshayee, M.S., Borgaonkar, H.P. and
Ramesh, R., 2010. Past break-monsoon conditions detectable by high resolution
intra-annual δ18O analysis of teak rings. Geophysical
Research Letters 37, L05702,
doi:10.1029/2009GL041172. Managave, S.R., Sheshshayee M.S., Borgaonkar H.P. and
Ramesh R., 2010. Intra-annual oxygen isotope variations in central Indian
teak cellulose: possibility of improved resolution for past monsoon
reconstruction. Current Science 98:930-937. Managave, S.R., Sheshshayee, M.S., Ramesh, R.,
Borgaonkar, H.P., Shahd, S.K., and Bhattacharyya, A., 2011. Response of
cellulose oxygen isotope values of teak trees in differing monsoon
environments to monsoon rainfall. Dendrochronologia
29:89–97. Marshall, J.D. and Monserud, R.A. 2006. Co-occurring
species differ in tree-ring δ18O trends. Tree Physiology
26: 1055–1066. Miller, D.L., Mora, C.I., Grissino-Mayer, H.D., Mock,
C.J., Uhle, M.E. and Sharp Z., 2006. Tree ring isotope record of tropical
cyclone activity. Proc. Nat. Acad. Sci. 103:14294-14297. Mora, C.I., Miller, D.L., and Grissino-Mayer, H.D.,
2007. Oxygen isotope proxies in tree-ring cellulose: Tropical cyclones,
drought, and climate oscillations. In Stable
Isotopes as Indicators of Ecological Change, Dawson,T.E., Siegwolf,
R.T.W. (eds.), Terrestrial Ecology,
Vol. 1, pp. 63-75, Elsevier. Norström, E., Holmgren, K. and Mörth, C.-M., 2008. A
600-year-long δ18O record from cellulose of Breonadia salicina trees, South
Africa. Dendrochronologia 26(1):21-33. Pendall, E.G. 1997.
Precipitation seasonality recorded in D/H ratios of pinyon pine
cellulose in the southwestern Qian, J., Deng, Z., Tu, Q., Wang, S.,
and Huang, Y., 2002. Climatic
significance of δD time series in tree rings from Tianmu Mountain. Science in Ramesh,
R., Bhattacharya, S.K. and Gopalan, K. 1985. Dendrochronological implications
of isotope coherence in trees from Ramesh, R., Bhattacharya, S.K. and Gopalan, K.
1986. Climatic correlations in the
stable isotope records of silver fir (Abies
pindrow) trees from Ramesh, R., Bhattacharya, S.K. and Gopalan, K.
1988. Climatic significance of
variations in the width and stable isotope ratios in tree rings. IN: Science and Archaeology Ramesh, R., Bhattacharya, S.K. and Pant, G.B. 1989.
Climatic significance of δD
variations in a tropical tree species from India. Nature 337: 149-150. Rebetz, M, Saurer, M. and Cherubini, P., 2003. To what extent can oxygen isotopes in tree
rings and precipitation be used to reconstruct past atmospheric temperature?
A case study. Climatic Change 61: 237-248. Reynolds-Henne, C.E., Saurer, M. and Siegwolf
, R.T.W., 2009. Temperature versus species-specific influences on the
stable oxygen isotope ratio of tree rings. Trees-Structure and Function
23(4): 801-811. Richter, S.L., Johnson, A.H., Dranoff, M.M., LePage,
B.A. and Williams, C.J., 2008. Oxygen isotope ratios in fossil wood
cellulose: Isotopic composition of Eocene- to Holocene-aged cellulose. Geochimica et Cosmochimica Acta 72(12): 2744-2753. Richter, S.L., Johnson, A.H., Dranoff, M.M. and Rinne, K.T., Loader, N.J., Switsur, V.R., and
Waterhouse, J.S., 2013. 400-year May–August precipitation reconstruction for
Southern England using oxygen isotopes in tree rings. Quaternary Science
Reviews 60:13–25.
doi:10.1016/j.quascirev.2012.10.048. Robertson, Roden, J.S. and
Ehleringer, J.R., 1999. Hydrogen and oxygen isotope ratios of tree-ring
cellulose for riparian trees grown long-term under hydroponic, controlled
environmental environments. Oecologia 121: 467-477. Roden, J.S. and Ehleringer, J.R., 1999. Observations of
hydrogen and oxygen isotopes in leaf water confirm the Craig-Gordon model
under wide-ranging environmental conditions.
Plant Phys. 120:
1165-1173 Roden, J.S. and Ehleringer, J.R., 2000. Hydrogen and oxygen
isotope ratios of tree ring cellulose for field-grown riparian trees. Oecologia 123: 481-489. Roden J.S. and
Ehleringer J.R., 2000. There is no temperature dependence of net biochemical
fractionation of hydrogen and oxygen isotopes in tree-ring cellulose. Isotopes
in Environmental and Health Studies 36:303-317. doi:10.1080/10256010008036389. Roden, J.S., Lin, G. and Ehleringer, J.R., 1999. A
mechanistic model for interpretation of hydrogen and oxygen isotope ratios in
tree ring cellulose. Geochimica
et Cosmochimica Acta 64: 21-35. Rozanski, K., Araguas-Araguas, L. and
Gonfiantini, R. 1992. Relation between long-term trends of oxygen-18 isotope composition of
precipitation and climate. Science 258: 981-985. Sano, M., Dimri,
A.P., Ramesh, R., Xu, C., Li, Z., and Nakatsuka, T., 2017. Moisture source
signals preserved in a 242-year tree-ring δ18O chronology in
the western Himalaya. Global and Planetary Change 157:73-82. Sano, M., Sheshshayee,
M.S., Managave, S., Ramesh, R., Sukumar, R. and Sweda T., 2010. Climatic
potential of δ18O of Abies
spectabilis from the Nepal Himalaya. Dendrochronologia 28: 93–98. Sano, M., Tshering,
P., Komori, J., Fujita, K., Xu, C., and Nakatsuka, T., 2013. May–September precipitation in the Bhutan
Himalaya since 1743 as reconstructed from tree-ring cellulose δ18O.
Journal of Geophysical Research- Atmospheres 118: 8399-8410. Sano, M., Xu, C.,
Nakatsuka, T., 2012. A 300-year
Vietnam hydroclimate and ENSO variability record reconstructed from tree ring
δ18O. Journal of Geophysical Research 117(D12): doi:10.1029/2012JD017749. Saurer, M., Borella, S. and Leuenberger, M. 1997. δ18O of tree rings of beech (Fagus silvatica) as a record of δ18O
of the growing season precipitation. Tellus
49B: 80-92. Saurer, M., Schweingruber, F., Vaganov, E.A., Shiyatov,
S.G. and Siegwolf, R., 2002. Spatial
and temporal oxygen isotope trends at the northern tree-line in Savard, M.M., Bégin, C., Smirnoff, A., Schiegl, W.E. 1974. Climatic significance of deuterium
abundance in growth rings of Picea. Nature
251: 582-584. Shu, Y., Feng, X., Gazis, C., Smith, B.N. and Ziegler, H. 1990. Isotopic fractionation Acta 69: 791-799. Smith, B.N. and Ziegler, H. 1990. Isotopic fractionation of hydrogen
in plants. Bot. Acta 103:
335-342. Song, X., Clark, K.S., and
Helliker, B.R., 2014. Interpreting
species-specific variation in tree-ring oxygen isotope ratios among three
temperate forest trees. Plant, Cell
and Environment 37:2169–2182. Sternberg, L.S.L., Terwilliger, V.J. and DeNiro, M.J., 1995. Hydrogen isotope fractionation in
wood-producing avocado seedlings: Biological constraints to paleoclimate
interpretations of δD values in tree ring cellulose nitrate. Geochimica
et Cosmochimica Acta 69: 791-799. Smith, B.N. and Ziegler, H. 1990. Isotopic
fractionation 24: 5199-5207. Treydte, K., Boda, S.,
Graf Pannatier, E., Fonti, P., Frank, D., Ullrich, B., Saurer, M., Siegwolf,
R., Battipaglia, G., Werner, W., and Gessler, A., 2014. Seasonal transfer of oxygen isotopes from
precipitation and soil to the tree ring: Source water versus needle water enrichment. New Phytologist 202(3):772-83 Treydte, K.S.,
Schleser, G.H., Helle, G., Tsuji, H.,
Nakatsuka, T. and Takagi, K., 2006. δ18O of
tree-ring cellulose in two species (spruce and oak) as proxies of
precipitation amount and relative humidity in northern Japan. Chemical
Geology 231: 67-76 Voelker, S.L.,
Stambaugh, M.C., Guyette, R.P., Feng, X., Grimley, D.A., Leavitt, S.W.,
Panyushkina, I., Grimm.E., Jeremiah P. Marsicek, J.P., Shuman, B., Curry, B.,
2015. Deglacial hydroclimate for midcontinental North America. Quaternary
Research 83:336-344, http://dx.doi.org/10.1016/j.yqres.2015.01.001. Waterhouse,
J.S., Switsur, V.R., Barker, A.C., Carter, A.H.C., and Robertson, White, J.W.C. 1989.
Stable hydrogen isotope ratios in plants: A review of current theory
and some potential applications. IN Stable Isotopes in Ecological Research,
Ecological Studies 68, Rundel, P.W., Ehleringer, J.R. and Nagy, K.A.
(eds.), White, J.W.C., Cook, E.R., White, J.W.C., Wigley,
T.M. L., Gray, B.M. and Kelly, P.M. 1978. Climatic interpretation of δ18O and δD in tree rings. Nature 271: 92-93. Wright, W.E., 2008.
Statistical evidence for exchange of oxygen isotopes in holocellulose
during long-term storage. Chemical
Geology 252:102-108. Wright, W.E. and Leavitt, S.W., 2006. Boundary layer humidity reconstruction for
a semiarid location from tree ring cellulose δ18O. Geophysical
Research Letters 111, D18105,
doi:10.1029/2005JD006806. Xu, C., Sano, M., and Nakatsuka, T., 2011. Tree ring
cellulose δ18O of Fokienia hodginsii in northern Laos: A promising proxy to
reconstruct ENSO? J. Geophys. Res.
116(D24):D24109. Xu, C., Sano, M., and Nakatsuka, T., 2013. A 400-year record of hydroclimate
variability and local ENSO history in northern Southeast Asia inferred from
tree-ring δ18O. Palaeogeography, Palaeoclimatology,
Palaeoecology 386: 588-598. Xu, C., Sano,
M., Yoshimura, K., Nakatsuka, T., 2014.
Oxygen isotopes as a valuable tool for measuring annual growth in
tropical trees that lack distinct annual rings. Geochemical Journal 48: 371-378. Xu, C., Zheng, H., Nakatsuka, T., and Sano, M.,
2013. Oxygen isotope signatures
preserved in tree-ring cellulose as a proxy for April–September precipitation
in Fujian, the subtropical region of southeast China. Journal of
Geophysical Research- Atmospheres 118:
12,805-812,815. Xu, C.X., Shao, X.M., An, W.L., Nakatsuka, T., Zhang,
Y., Sano, M., and Guo, Z.T., 2017. Negligible local-factor influences on tree
ring cellulose d18O of
Qilian juniper in the Animaqing Mountains of the eastern Tibetan Plateau.
Tellus B: Chemical and Physical Meteorology 69:1, DOI:
10.1080/16000889.2017.1391663. Xu, G., Liu, X., Qin, D., Chen, T., An, W., Wang, W.,
Wu, G., Zeng, X., Ren, J., 2013. Climate warming and increasing atmospheric
CO2 have contributed to increased intrinsic water-use efficiency
on the northeastern Tibetan Plateau since 1850. Trees–Structure and
Function 27:465–475. Xu, G., Liu, X., Qin, D., Chen, T., Wang, W., Wu, G.,
Sun,W., An,W., Zeng, X., 2014. Relative humidity
reconstruction for northwestern China’s Altay Mountains using tree-ring d18O. Chinese Science
Bulletin 59:190–200. Xu, G. B., Chen, T., Liu, X. H., An, W. L., Wang, W.
Z., Yun, H. B., 2011. Potential Linkages
between the moisture variability on the northeastern Qaidam Basin, China
Since 1800AD and the East Asian summer monsoon as reflected by tree-ring
δ18O. J. Geophys.
Res. 116, D09111, doi:10.1029/2010JD015053. Yakir, D. 1992.
Variations in the natural abundance of oxygen-18 and deuterium in
plant carbohydrates. Plant, Cell
and Environment 15: 1005-1020. Yapp, C.J. and Epstein, S. 1977. Climatic implications of D/H ratios of
meteoric water over Yapp, C.J. and Epstein, S. 1982. Climatic significance of the hydrogen
isotope ratios in tree cellulose. Nature
297: 636-639. Yapp, C.J., and Epstein, S. 1985. Seasonal contributions
to the climatic variations recorded in tree ring deuterium/hydrogen Data. J.
Geophys. Res., 90(D2):
3747–3752. Young, G.H.F., Loader, N.J., McCarroll, D., Bale, R.J.,
Demmler, J.C., Miles, D., Nayling, N.T., Rinne, K.T., Robertson, I., Watts,
C., and Whitney, M., 2015. Oxygen stable isotope ratios from British oak
tree-rings provide a strong and consistent record of past changes in summer
rainfall. Climate Dynamics 45:3609–3622, doi:10.1007/s00382-015-2559-4. δ13C and
δD in Tree Rings Aucour,
A.-M., Tao, F.-X., Sheppard, S.M.F., Huang, N.-W. and
Liu, C.Q., 2002. Climatic and monsoon
isotopic signals (δD, δ13C) of northeastern China tree rings. J.
Geophys. Res. 107(7):
10.1029/2001JD000464. Epstein, S. and Krishnamurthy, R.V. 1990. Environmental information in the isotopic
record in trees. Phil. Trans. R.
Soc. Lond. A 330: 427-439. Friedrich, M., Kromer, B., Spurk, M., Hoffman, J. and
Kauser, K.F., 1999. Paleo-environment
and radiocarbon calibration as derived from Lateglacial/Early Holocene
tree-ring chronologies. Quaternary
International 61: 27-39. Jedrysek, M.O., Krapiek, M., Skrzypek,
G., Kaulzny, A. and Halas, S., 1998.
An attempt to calibrate carbon and hydrogen isotope ratios in oak tree
ring cellulose: the last millennium. Materials
and Geoenvironment 45: 82-90. Krishnamurthy, R.V. and Machavaram, M., 2000. Is there
a stable isotope evidence for the CO2 fertilization effect? Proc. Indian Acad. Sci. (Earth Planet.
Sci.) 109(1): 141-144 Lipp, J., Trimborn, P., Fritz, P., Moser, H., Becker,
B. and Frenzel, B. 1991. Stable
isotopes in tree ring cellulose and climatic change. Tellus 43B: 322-330. Mayr, C., Frenzel, B., Friedrich, M., Spurk, M.,
Stichler, W. and Trimborn, P. 2003. Stable carbon- and hydrogen-isotope ratios of
subfossil oaks in southern δ13C and δ18O in Tree Rings Anderson,
R.L., Byrne, R., Dawson, T., 2008. Stable isotope evidence for a foggy climate
on Santa Cruz Island, California at ~16,600 cal. yr. BP. Palaeogeography, Palaeoclimatology,
Palaeoecology 262: 176-181. Anderson,
W.T., Bernasconi, S.M., McKenzie, J.A. and Saurer, M. 1998. Oxygen and carbon
isotopic record of climatic variability in tree ring cellulose (Picea abies): an example from central Babst, F.,
Alexander, M.R., Szejner, P., Bouriaud, O., Klesse, S., Roden, J., Ciais, P.,
Poulter, B., Frank, D., Moore, J.P., and Trouet, V., 2014. A tree-ring
perspective on the terrestrial carbon cycle. Oecologia 176(2):307–322. Barbour, M.M.,
Walcroft, A.S., Farquhar, G.D., 2002: Seasonal
variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata.
Plant, Cell and Environment 25:
1483-1499. Barnard, H.R., Brooks, J.R., and Bond, B.J., 2012.
Applying the dual-isotope conceptual model to interpret physiological trends
under uncontrolled conditions. Tree Physiology 32(10):1183-1198. Battipaglia, G., Cherubini, P., Saurer, M., Siegwolf,
R.T.W., Strumia, S. and Cotrufo, F.M., 2007. Volcanic explosive eruptions of
the Vesuvio decrease tree-ring growth but not photosynthetic rates in the
surrounding forests. Global Change
Biology 13:1122–1137. Battipaglia, G., Saurer, M., Cherubini, P.,
Calfapietra, C., McCarthy, H.R., Norby, R.J., Cotrufo, and M.F., 2013.
Elevated CO2 increases tree-level intrinsic water use efficiency:
Insights from carbon and oxygen isotope analyses in tree rings across three
forest FACE sites. New Phytologist 197:544–554. Battipaglia, G., Saurer, M., Cherubini, P.,
Siegwolf, R.T.W., Cotrufo, M.F., 2009.
Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy. Forest
Ecology and Management 257:820-828. Bégin, C., Gingras, M., Savard, M.M., Marion, J.,
Nicault, A., and Bégin, Y., 2015. Assessing tree ring carbon and oxygen
stable isotopes for climate reconstruction in the Canadian northeastern
boreal forest. Palaeogeography, Palaeoclimatology, Palaeoecology 423:91-101. Boettger, T., and Friedrich, M., 2009. A new serial pooling method of shifted tree
ring blocks to construct millennia long tree ring isotope chronologies with
annual resolution. Isotopes in Environmental and Health Studies 45(1): 68–80. Brooks, R.J., and Coulombe, R., 2009. Physiological
responses to fertilization recorded in tree rings: Isotopic lessons from a
long-term fertilization trial. Ecological
Applications 19(4):1044–1060. Brooks, J.R., Mitchell, A.K., 2011. Interpreting tree responses to thinning and
fertilization using tree-ring stable isotopes. New Phytologist 190(3): 770-82. Cullen, L.E., and Grierson, P.F., 2007. A stable oxygen,
but not carbon, isotope chronology of Callitris
columellaris reflects recent climate change in north-western Danis, P.-A., Hatté, C., Misson, L., and Guiot, J.,
2012. MAIDENiso: a multiproxy
biophysical model of tree-ring width and oxygen and carbon isotopes. Canadian Journal of Forest Research 42(9):1697-1713, https://doi.org/10.1139/x2012-089. Danis, P.A., Masson-Delmotte, V., Stievenard, M.,
Guillemin, M.T., Daux, V., Naveau, P., Grafenstein, U.V., 2006.
Reconstruction of past precipitation δ18O using tree-ring
cellulose δ18O and δ13C: A calibration study
near Lac d'Annecy, Daux, V., Edouard, J.L., Masson-Delmotte, V.,
Stievenard, M., Hoffmann, G., Pierre, M., Mestre, O., Danis, P.A., and
Guibal, F., 2011. Can climate
variations be inferred from tree-ring parameters and stable isotopes from Larix decidua? Juvenile effects,
budmoth outbreaks, and divergence issue.
Earth and Planetary Science Letters 309(3-4): 221–233. Dorado
Lińán, I., Gutiérrez, E., Helle, G., Heinrich, I., Andreu-Hayles, L.,
Planells, O., Leuenberger, M., Bürger, C., Schleser, G., 2011. Pooled versus
separate measurements of tree-ring stable isotopes, Science of The Total
Environment 11: 2244-2251,
doi:10.1016/j.scitotenv.2011.02.010. Edwards, T.W.D., Birks, S.J., Luckman, B.H. and
MacDonald, G.M., 2008. Climatic and hydrologic variability during the past
millennium in the eastern Rocky Mountains and northern Great Plains of
western Edwards, T.W.D.,
Hammarlund, D., Newton, B.W., Sjolte, J., Linderson, H., Sturm, C., St.
Amour, N.A., Bailey, J.N.-L., Nilsson, A.L., 2017. Seasonal variability in
Northern Hemisphere atmospheric circulation during the Medieval Climate
Anomaly and the Little Ice Age. Quaternary
Science Reviews 165:102-110. English, N.B., McDowell,
N.G., Allen, C.D., and Mora, C., 2011. The effects of α-cellulose
extraction and blue-stain fungus on retrospective studies of carbon and
oxygen isotope variation in live and dead trees. Rapid Communications in Mass
Spectrometry 25: 3083-3090. Esper, J., Frank, D.C.,
Battipaglia, G., Büntgen, U., Holert, C., Treydte, K., Siegwolf, R. and
Saurer, M., 2010. Low-frequency noise
in δ13C and δ18O tree ring data: A case study
of Pinus uncinata in the Spanish
Pyrenees. Global Biogeochem. Cycles 24, GB4018, doi:10.1029/2010GB003772. Esper, J., Holzkämper, S., Büntgen,
U., Schöne, B., Keppler, F., Hartl, C., St. George, S., Riechelmann, D.F.,
and Treydte, K., 2018. Site-specific
climatic signals in stable isotope records from
Swedish pine forests. Trees 32:1–15. Etien, N., Daux, V.,
Masson-Delmotte, V., Stievenard, M., Bernard, V., Durost, S., Guillemin,
M.T., Mestre, O., Pierre, M.,
2008. A bi-proxy
reconstruction of Ferrio, J. P. and Voltas, J., 2005. Carbon and oxygen isotope ratios in wood
constituents of Pinus halepensis as
indicators of precipitation, temperature and vapour pressure deficit. Tellus B 57: 164-173. Fu, P.-L., Grießinger, J., Gebrekirstos, A., Fan, Z.-X., Bräuning, A.,
2017. Earlywood and latewood stable carbon and oxygen isotope variations in
two pine species in southwestern China during the recent decades. Frontiers
in Plant Science 7: 2050,
DOI=10.3389/fpls.2016.02050. Gessler, A., Brandes, E., Buchmann, N., Helle, G., Rennenberg, H. and
Barnard, R.L., 2009. Tracing carbon and
oxygen isotope signals from newly assimilated sugars in the leaves to the
tree-ring archive. Plant Cell and Environment 32: 780-795. Gessler,
A., Ferrio, J.P., Hommel, R., Treydte, K., Werner, R.A., and Monson, R.K.,
2014. Stable isotopes in tree rings: Towards a mechanistic understanding of
isotope fractionation and mixing processes from the leaves to the wood. Tree
Physiology 34:796-818. Giammarchi, F.,
Cherubini, P., Pretzsch, H., Tonon, G., 2017. The increase of atmospheric CO2
affects growth potential and intrinsic water-use efficiency of Norway spruce
forests: Insights from a multi-stable isotope analysis in tree rings of two
Alpine chronosequences. Trees–Structure and Function 31:503–515. Giuggiola, A., Ogée,
J., Rigling, A., Gessler, A., Bugmann, H., and Treydte, K., 2016. Improvement
of water and light availability after thinning at a xeric site: Which matters
more? A dual isotope approach. New Phytologist 210(1):108-121, doi: 10.1111/nph.13748. Gómez-Guerrero, A.,
Silva, L.C., Barrera-Reyes, M., Kishchuk, B., Velázquez-Martínez, A.,
Martínez-Trinidad, T., Plascencia-Escalante, F.O., and Horwath, W.R.,
2013. Growth decline and divergent
tree ring isotopic composition (δ13C and δ18O)
contradict predictions of CO2 stimulation in high altitudinal
forests. Global Change Biology 19(6):1748-1758. Guerrieri,
R., Mencuccini, M., Sheppard, L.J., Saurer, M., Perks, M., Levy, P., Sutton,
M.A., Borghetti, M., and Grace, J., 2011. The legacy of enhanced N and S
deposition as revealed by the combined analysis of δ13C,
δ18O and δ15N in tree rings. Global Change
and Biology 17:1946-1962. Haupt, M., Weigl,
M., Grabner, M., and Boettger, T. 2011. A 400-year reconstruction of July
relative air humidity for the Vienna region (eastern Austria) based on carbon
and oxygen stable isotope ratios in tree-ring latewood cellulose of oaks (Quercus petraea Matt. Liebl.). Climatic
Change 105:243-262. doi: 10.1007/s10584-010-9862-1. Hilasvuori, E.,
Berninger, F., Sonninen, E., Tuomenvirta, H., and Jungner H., 2009. Stability
of climate signal in carbon and oxygen isotope records and ring width from
Scots pine (Pinus sylvestris L.) in
Finland. Journal of Quaternary Sci. 24: 469-480. Horacek, M.,
Jakusch, M., and Krehan, H., 2009. Control of origin of larch wood:
Discrimination between European (Austrian) and Siberian origin by stable
isotope analysis. Rapid Communications in Mass Spectrometry 23: 3688-3692. Huang, Z., Liu, B.,
Davis, M., Sardans, J., Peńuelas, J., and Billings, S., 2016. Long-term
nitrogen deposition linked to reduced water use efficiency in forests with
low phosphorus availability. New Phytologist 210:431-442, doi:10.1111/nph.13785. Jennings,
K., Guerrieri, R., Vadeboncoeur, M., and Asbjornsen, H., 2016. Response of Quercus velutina growth and water use
efficiency to climate variability and nitrogen fertilization in a temperate
deciduous forest in the northeastern U.S. Tree Physiology 36(4):428-443. Hunter, R.D., Panyushkina,
I.P., Leavitt, S.W., Wiedenhoeft, A.C. and Zawiskie, J., 2006. A multiproxy
environmental investigation of Holocene wood from a submerged conifer forest
in Kilroy, E., McCarroll, D., Young, G.H.F., Loader,
N.J., and Bale, R., 2016. Absence of juvenile effects confirmed in stable carbon
and oxygen isotopes of European larch trees. Acta Silvae Ligni 111:27–33. Knorre, A.A., Siegwolf, R.T.W., Saurer, M.,
Sidorova, O.V., Vaganov, E.A. and Kirdyanov, A.V., 2010. Twentieth century
trends in tree ring stable isotopes (δ13C and δ18O)
of Larix siberica under
dry conditions in the forest steppe in Siberia. Journal of Geophysical
Research-Biogeosciences 115,
G03002, doi:10.1029/2009JG000930. Kremenetski, K.,
Boettger, T., MacDonald, G., Vaschalova, T., Sulerzhitsky, L., Hiller, A.,
2004. Mediaeval climate warming and aridity as indicated by multiproxy
evidence from the Kola Peninsula, Kress, A., Saurer, M.,
Siegwolf, R. T. W., Frank, D. C., Esper, J., and Bugmann, H., 2010. A 350 year drought reconstruction from
Alpine tree ring stable isotopes. Global Biogeochem. Cycles 24: GB2011, doi:10.1029/2009GB003613.
Leavitt, S.W., Treydte, K.,
and Yu, L., 2010. Environment in time
and space: Opportunities from tree-ring isotope networks. IN Understanding Movement, Pattern, and
Processes on Earth Through Isotope Mapping, West, J.B.; Bowen, G.J.;
Dawson, T.E.; Tu, K.P. (eds.), Ch. 6, Springer, Dordrecht, pp. 113-135. Leonelli, G., Battipaglia, G., Siegwolf, R.T.W., Saurer, M., Morra di
Cella, U., Cherubini, P., Pelfini, M., 2012. Climatic isotope signals in tree
rings masked by air pollution: A case study conducted along the Mont Blanc
Tunnel access road (Western Alps, Italy). Atmospheric Environment 61:169-179. Lévesque, M., Siegwolf, R., Saurer, M., Eilmann, B., and Rigling, A.,
2014. Increased water-use efficiency does not lead to enhanced tree growth
under xeric and mesic conditions. New Phytologist 203:94-109, doi:10.1111/nph.12772. Li, Z.-H., Labbé, N., Driese, S.G., Grissino-Mayer, H.D., 2011. Micro-scale analysis of tree-ring δ18O
and δ13C on α-cellulose spline reveals high-resolution
intra-annual climate variability and tropical cyclone activity. Chemical Geology 284:138 – 147. Liu, X., An, W.,
Leavitt, S.W., Wang, W., Xu, G., Zeng, X., and Qin, D., 2014. Recent
strengthening of correlations between tree-ring δ13C and
δ18O in mesic western China: Implications to climatic
reconstruction and physiological responses.
Global and Planetary Change 113:23–33. Liu, X., Wang, W., Xu, G.,
Zeng, X., Wu, G., Zhang, X., and Qin D., 2014. Tree growth and intrinsic
water-use efficiency of inland riparian forests in northwestern China:
Evaluation via δ13C and δ18O analysis of tree
rings. Tree Physiology 34(9):
966-980, doi: 10.1093/treephys/tpu067.980. Liu, X., Zhang, X., Zhao, L., Xu, G., Wang, L., Sun, W., Zhang, Q.,
Wang, W., Zeng, X., Wu, G., 2017. Tree ring δ18O reveals no
long-term change of atmospheric water demand since 1800 in the northern Great
Hinggan Mountains, China. Journal of Geophysical Research–Atmospheres 122:6697–6712. Loader, N. J., Helle, G., Los, S., Lehmkuhl, F., and Schleser, G. H.,
2010. Twentieth century summer
temperature variability in the southern Altai Mountains: A carbon and oxygen
isotope study of tree rings. Holocene, doi: 274
10.1177/0959683610369507. Loader, N.J., Young, G.H., McCarroll, D., and Wilson, R.J., 2013.
Quantifying uncertainty in isotope dendroclimatology. The Holocene 23:1221–1226. doi:10.1177/0959683613486945. Marias, D.E., Meinzer, F.C., Woodruff, D.R., Shaw, D.C., Voelker,
S.L., Brooks, J.R., Lachenbruch, B., Falk, K., and McKay, J., 2014. Impacts of dwarf mistletoe on the
physiology of host Tsuga heterophylla
trees as recorded in tree-ring C and O stable isotopes. Tree Physiology
34(6):595-607. Masson-Delmotte, V., G. Rafalli-Delerce, P. A. Danis, P. Yiou, M.
Stievenard, F. Guibal, O. Mestre, V. Bernard, H. Goose, G. Hoffmann and J.
Jouzel, 2005. Changes in European
precipitation seasonality and in drought frequencies revealed by a
four-century long tree-ring isotopic record from Brittany, Moreno-Gutiérrez, C.,
Dawson, T. E., Nicolás, E., and Querejete, J.I., 2012. Isotopes reveal
contrasting water use strategies among coexisting plant species in a
Mediterranean ecosystem. New Phytologist 196:489-496. Nakatsuka, T., Ohnishi,
K., Hara, T., Sumida, A., Mitsuishi, D., Kurita, N. and Uemura, S., 2004.
Oxygen and carbon isotopic ratios of tree-ring cellulose in a
conifer-hardwood mixed forest in northern Nock, C. A., Baker, P. J., Wanek, W., Leis, A.,
Grabner, M., Bunyavejchewin, S. and Hietz, P., 2010. Long-term increases in
intrinsic water-use efficiency do not lead to increased stem growth in a
tropical monsoon forest in western Thailand.
Global Change Biology no. doi: 10.1111/j.1365-2486.2010.02222.x Offermann, C., Ferrio,
J.P., Holst, J., Grote, R., Siegwolf, R., Kayler, Z., Gessler, A., 2011. The long way down--are carbon and oxygen
isotope signals in the tree ring uncoupled from canopy physiological
processes? Tree Physiology 31(10): 1088-102. Ogee, J., Barbour, M.M.,
Wingate, L., Bert, D., Bosc, A., Stievenard, M., Lambrot, C., Panyushkina, I.P.,
Leavitt, S.W., Thompson, T.A., Schneider, A.F. and Lange, T., 2008.
Environment and paleoecology of a 12 ka mid-North American Younger Dryas
forest chronicled in tree rings. Quaternary Research 70: 433-441. Planells, O., Gutiérrez,
E., Helle, G., and Schleser, G., 2009. A forced response to twentieth century
climate conditions of two Spanish forests inferred from widths and stable
isotopes of tree rings. Climatic Change 97:229–252. Pons, T.L. and Helle,
G., 2011. Identification of anatomically non-distinct annual rings in tropical
trees using stable isotopes. Trees-Structure and Function 25: 83-93. Porter, T.J., Pisaric,
M.F.J., Kokelj, S.V., Edwards, T.W.D., 2009.
Climatic signals in δ13C and δ18O of
tree-rings from white spruce in the Mackenzie Delta Region, northern Canada. Arctic, Antarctic and Alpine Research
41: 497-505. Poussart, P.F., M.N.
Evans and D.P. Schrag, 2004. Resolving seasonality in tropical trees:
multi-decade, high-resolution oxygen and carbon isotopic records from Poussart, P.F. and
Schrag, D.P., 2005. Seasonally resolved stable isotope
chronologies from northern Powers, M.D., Pregitzer, K.S., Palik, B.J., Webster,
C.R., 2010. Wood δ13C,
δ18O and radial growth responses of residual red pine to
variable retention harvesting. Tree Physiology 30(3):326-334. Raffalli-Delerce, G., Masson-Delmotte, V., Dupouey, J.
L., Stievenard, M., Reynolds-Henne, C. E., Siegwolf,
R. T. W., Treydte, K. S., Esper, J., Henne, S. And Saurer, M., 2007. Temporal
stability of climate-isotope relationships in tree rings of oak and pine ( Rinne, K.T., Loader, N.J., Switsur, V.R., Treydte,
K.S., and Waterhouse, J.S., 2010.
Investigating the influence of sulpher dioxide (SO2) on the
stable isotope ratios (δ13C and δ18O) of tree
rings. Geochim. Cosmochim. Acta 74:
2327-2339. Roden, J., 2008.
Cross-dating of tree ring δ18O and δ13C
time series. Chemical Geology 252:72-79. Roden, J.S., Bowling, D.R., McDowell, N.G., Bond, B.J.,
and Ehleringer, J.R., 2005. Carbon and oxygen isotope ratios of tree ring
cellulose along a precipitation transect in Roden, J.S., and Ehleringer, J.R., 2007. The effect of
summer precipitation on the stable oxygen and carbon isotopic composition of
tree ring cellulose in Pinus ponderosa.
Tree Physiology 27:
491-501. Roden, J.S., and Farquhar, G.D., 2012. A controlled test of the dual-isotope
approach for the interpretation of stable carbon and oxygen isotope ratio
variation in tree rings. Tree Physiology 32:490-503. Roden, J.S., Johnstone, J.A., and Dawson, and T.E.,
2009. Intra-annual variation in the
stable oxygen and carbon isotope ratios of cellulose in tree rings of coast
redwood (Sequoia sempervirens). The
Holocene 19: 189-197. Roden, J.S., Johnstone, J.A., Dawson, T.E., 2011. Regional and watershed-scale coherence in
the stable-oxygen and carbon isotope ratio time series in tree rings of coast
redwood (Sequoia sempervirens). Tree-Ring
Research 67(2):71-86. Roden, J., and Siegwolf, R. 2012. Is the dual-isotope conceptual model fully
operational? Tree Physiology 32:1179-1182. Rossi, L., Sebastiani, L., Tognetti, R., d’Andria, R.,
Morelli, G., and Cherubini, P., 2013.
Tree-ring wood anatomy and stable isotopes show structural and
functional adjustments in olive trees under different water availability.
Plant and Soil 372:567–579, 10.1007/s11104-013-1759-0. Saffell, B.J., Meinzer, F.C., Voelker, S.L., Shaw,
D.C., Brooks, J.R., Lachenbruch, B., and McKay, J., 2014. Tree-ring stable isotopes record the impact
of a foliar fungal pathogen on CO2 assimilation and growth in
Douglas-fir. Plant, Cell and Environment 37(7):1536-47. Sarris, D., Siegwolf, R., and Körner, C., 2013. Inter- and intra-annual stable carbon and
oxygen isotope signals in response to drought in Mediterranean pines. Agricultural
and Forest Meteorology 168:59-68.
Saurer, M., Aellen, K., and Siegwolf, R. 1997.
Correlating δ13C and δ18O in cellulose of
trees. Plant, Cell and Environment 20: 1543-1550. Saurer, M., Cherubini, P., Reynolds-Henne, C.E., Treydte,
K.S., Anderson, W.T. and Siegwolf, R.T.W., 2008. An investigation of the
common signal in tree ring stable isotope chronologies at temperate
sites. J. Geophys. Res. 113: G04035, doi:10.1029/2008JG000689. Saurer, M., Siegwolf,
R.T.W., 2007. Human impacts on tree-ring growth reconstructed from
stable isotopes. In Stable Isotopes as Indicators of
Ecological Change, Dawson,T.E., Siegwolf, R.T.W. (eds.), Terrestrial Ecology, Vol. 1, pp.
49-62, Elsevier. Scheidegger, Y., Saurer, M., Bahn, M. and Siegwolf, R., 2000. Linking stable oxygen
and carbon isotopes with stomatal conductance and photosynthetic capacity: A
conceptual model. Oecologia 125:
350–357. Schollaen, K., Heinrich, I., and Helle, G., 2014. UV-laser-based microscopic dissection of
tree rings - a novel sampling tool for δ13C
and δ18O studies. New Phytolologist 201(3):1045-55. Schollaen, K., Heinrich, I., Neuwirth, B., Krusic,
P.J., D'Arrigo, R.D., Karyanto, O., and Helle, G., 2013. Multiple tree-ring chronologies (ring
width, δ13C and δ18O) reveal dry and rainy
season signals of rainfall in Indonesia. Quaternary Science Reviews 73:170-181. Seftigen, K., Linderholm, H.W., Loader, N.J., Liu,
Y. and Young, G.H.F., 2011. The influence of climate on 13C/12C
and 18O/16O ratios in tree ring cellulose of Pinus sylvestris L. growing in the
central Scandinavian mountains. Chemical Geology 286: 84–93. Shestakova, T.A., Aguilera, M., Ferrio, J.P.,
Gutiérrez, E., and Voltas, J., 2014. Unravelling
spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance
modelling approach of carbon and oxygen isotope ratios. Tree Physiology
34(8):819-838. Sidorova, O.V., Saurer, M., Myglan, V.S., Eichler,
A., Schwikowski, M., Kirdyanov, A.V., Bryukhanova, M.V., Gerasimova, O.V.,
Kalugin, I.A., Daryin, A.V., and Siegwolf, R.T.W., 2010. A multi-proxy
approach for revealing recent climatic changes in the Russian Altai. Climate Dynamics 38 (1-2):175-188. doi: 10.1007/s00382-010-0989-6. Sidorova O.V., Siegwolf, R.T.W., Saurer, M.,
Naurzbaev, and M.M., Vaganov, E.A., 2008. Isotopic composition (δ13C,
δ18O) in wood and cellulose of Siberian larch trees for early
Medieval and recent periods, J. Geophys. Res. (Biogeosciences) 113, G02019, doi:10.1029/2007JG000473. Sidorova, O.V., Siegwolf, R.T.W., Saurer, M.,
Shashkin, A.V., Knorre, A.A., Prokushkin, A.S., Vaganov, E.A., and Kirdyanov,
A.V., 2009. Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) indicate
increasing water shortage in the Siberian north? Oecologia 161: 825-835. Simard, S., Elhani, S., Morin, H., Krause, C. and
Cherubini, P., 2008. Carbon and oxygen
stable isotopes from tree-rings to identify spruce budworm outbreaks in the
boreal Szejner, P., Wright, W.E., Babst, F., Belmecheri,
S., Trouet, V., Leavitt, S.W., Ehleringer, J.R., Monson, R.K., 2016. Latitudinal gradients in tree-ring stable carbon
and oxygen isotopes reveal differential climate influences of the North
American Monsoon System. Journal of Geophysical Research: Biogeosciences
121(7):1978-1991. doi: 10.1002/2016JG003460. Szymczak, S., Joachimski M.M., Bräuning A., Hetzer
T., Kuhlemann J., 2011. Comparison of
whole wood and cellulose carbon and oxygen isotope series from Pinus nigra ssp. laricio
(Corsica/France). Dendrochronologia
29(4):219-226. Szymczak, S., Joachimski M.M., Bräuning A., Hetzer
T., Kuhlemann J., 2012. Are pooled tree ring δ13C and δ18O
series reliable climate archives? —A case study of Pinus nigra spp. laricio (Corsica/France). Chemical Geology
308/309:40-49. Szymczak, S., Joachimski M.M., Bräuning A., Hetzer
T., Kuhlemann J., 2012. A 560 yr summer temperature reconstruction for the
Western Mediterranean basin based on stable carbon isotopes from Pinus nigra ssp. laricio (Corsica/France). Climates
of the Past 8:1737-1749. Tognetti, R.,
Lombardi, F., Lasserre, B., Cherubini, P., Marchetti, M., 2014. Tree-ring
stable isotopes reveal twentieth-century increases in water-use efficiency of
Fagus sylvatica and Nothofagus spp. in Italian and Chilean
mountains. PLoS ONE 9(11):
e113136. Treydte, K., Esper, J. and
Gärtner, H., 2004. Stabile Isotope in der Dendroklimatologie. Schweizerische
Zeitschrift für Forstwesen 155:
222-232. Verheyden, A., Helle, G.,
Schleser, G.H., Dehairs, F., Beeckman, H. and Koedam, N., 2004. Annual cyclicity in high-resolution stable carbon
and oxygen isotope ratios in the wood of the mangrove tree Rhizophora mucronata. Plant, Cell
and Environment 27:1525–1536. Voltas, J., Camarero, J.J., Carulla, D., Aguilera, M.,
Ortiz, A., and Ferrio, J.P., 2013. A
retrospective, dual-isotope approach reveals individual predispositions to
winter-drought induced tree dieback in the southernmost distribution limit of
Scots pine. Plant, Cell and Environment 36:1435-1448. Voltas, J., Chambel, M., Prada, M., Ferrio, J., 2008.
Climate‐related variability in carbon and oxygen stable isotopes among
populations of Aleppo pine grown in common‐garden tests. Trees –
Structure and Function 22:759–769.
Wagner, R. and Wagner, E., 2006. Influence of air
pollution and site conditions on trends of carbon and oxygen isotope ratios
in tree ring cellulose. Isotopes in Environmental and Health Studies 42(4): 351–365. Walker, X.J., Mack, M.C.,
and Johnstone, J.F., 2015. Stable carbon isotope analysis reveals widespread
drought stress in boreal black spruce forests. Global Change Biology 21(8):3102-3113. Ward, J.K., Harris, J.M., Cerling,
T.E., Wiedenhoeft, A., Lott, M.J., Dearing, M.D., Coltrain, J.B. and
Ehleringer, J.R., 2005. Carbon starvation in glacial trees recovered from the
La Brea tar pits, southern California. Proceedings of The National Academy
of Sciences 102: 690-694. Wang, W., Liu, X., Xu, G.,
Treydte, K., Shao, X., Qin, D., Wang, G., and McDowell, N.G., 2019. CO2
fertilization confounds tree‐ring records of regional hydroclimate at
northeastern Qinghai‐Tibetan Plateau. Earth and Space Science 6: 730–740, https://doi.org/10.1029/2018EA000529. Ward, J.K., Harris, J.M.,
Cerling, T.E., Wiedenhoeft, A., Lott, M.J., Dearing, M.D., Coltrain, J.B. and
Ehleringer, J.R., 2005. Carbon starvation in glacial trees recovered from the
La Brea tar pits, southern California. Proceedings of The National Academy
of Sciences 102: 690-694. Weidner, K., Heinrich, I.,
Helle, G., Löffler, J., Neuwirth, B., Schleser, G.H., and Vos, H., 2010. Consequences of larch budmoth outbreaks on
the climatic significance of ring width and stable isotopes of larch. Trees- Structure and Function 24:399-409. Weigl, M., Grabner, M., Helle, G., Schleser, G.H., and
Wimmer, R., 2007. Variability of
latewood-widths and -stable isotope ratios in a sessile oak tree (Quercus petraea (Matt.) Liebl.). Dendrochronologia 24(2-3):117-122 Weigl, M., Grabner, M.,
Helle, G., Schleser, G.H., and Wimmer, R., 2008. Characteristics of radial
growth and stable isotopes in a single oak tree to be used in climate
studies. Science of the Total
Environment 393(1):154-161 Weigt, R.B., Bräunlich, S., Zimmermann, L., Saurer, M.,
Grams, T.E., Dietrich, H.P., Siegwolf, R.T., and Nikolova, P.S., 2015.
Comparison of δ13C and
δ18O values between tree-ring whole wood and
cellulose in five species growing under two different site conditions. Rapid
Commun. Mass Spectrom. 29(23):2233-44. Yakir, D., Issar, A., Gat, J., Adar, E., Trimborn, P.,
and Lipp, J. 1994. 13C and 18O of wood from the Roman
siege rampart in Young, G.H.F., Demmler, J.C., Gunnarson, B.E.,
Kirchhefer, A.J., Loader, N.J., and McCarroll, D., 2011. Age trends in tree
ring growth and isotopic archives: A case study of Pinus sylvestris L. from northwestern Norway. Global
Biogeochemical Cycles 25:1–6. doi:10.1029/2010GB003913. van der
Sleen, P., Groenendijk, P., and Zuidema, P.A., 2015. Tree-ring δ18O
in African mahogany (Entandrophragma
utile) records regional precipitation and can be used for climate
reconstructions. Global and Planetary Change 127:58-66. δD, δ13C
and δ18O in Tree Rings Boettger, T., Haupt, M., Friedrich, M., Waterhouse,
J.S., 2014. Reduced climate
sensitivity of carbon, oxygen and hydrogen stable isotope ratios in tree-ring
cellulose of silver fir (Abies alba
Mill.) influenced by background SO2 in Franconia (Germany, Central
Europe). Environmental Pollution
185:281-94. Dodd, J.P., Patterson, W.P., Holmden, C. and Brasseur,
J.M., 2008. Robotic micromilling of
tree-rings: A new tool for obtaining subseasonal environmental isotope
records. Chemical Geology 252:21-30. Gori, Y., Wehrens, R., Greule, M., Keppler, F., Ziller,
L., La Porta, N., and Camin, F., 2013. Carbon, hydrogen and oxygen stable
isotope ratios of whole wood, cellulose and lignin methoxyl groups of Picea
abies as climate proxies. Rapid Communication Mass Spectrometry 27:265-275. Hangartner, S, Kress, A., Saurer, M. Frank, D., and
Leuenberger, M., 2010. Methods to
merge overlapping tree-ring isotope series to generate multi-centennial
chronologies. Chemical Geology 294–295:127–134. Hilasvuori, E., and
Berninger, F., 2010. Dependence of tree ring stable isotope abundances and
ring width on climate in Finnish oak. Tree Physiology 30:636–647. doi:10.1093/treephys/tpq019.
Etien, N., Daux, V., Masson-Delmotte, V., Mestre, O.,
Stievenard, M., Guillemin, M.T., Boettger, T., Leavitt, S.W., Panyushkina, I.P., Lange, T.,
Wiedenhoeft, A., Cheng, L., Hunter, R.D., Hughes, J., Pranschke, F.,
Schneider, A.F., Moran, J. and Stieglitz, R., 2006. Climate in the Libby, L.M. and Pandolfi, L.J. 1974. Temperature
dependence of isotope ratios in tree-rings. Proc. Nat. Acad. Sci.
71: 2482-2486. Libby, L.M. and Pandolfi, L.J. 1979. Tree thermometers
and commodities: historic climate indicators. Environment International
2: 317-333. Loader,
N.J., McCarroll, D., Gagen, M., Robertson, Loader,
N.J., Santillo, P.M., Woodman-Ralph, J.P., Rolfe, J.E., Hall, M.A., Gagen,
M., Robertson, I., Mischel,
M., Esper, J., Keppler, F., Greule, M., and Werner, W., 2015. δ˛H, δąłC and δą⁸O
from whole wood, α-cellulose and lignin methoxyl groups in Pinus sylvestris: A multi-parameter
approach. Isotopes Environ. Health Stud. 51(4):553-68. Robertson,
I., Field, E.M., Heaton, T.H.E., Pilcher, J.R., Pollard, M., Switsur, R. and
Waterhouse, J.S. 1995. Isotope coherence in oak cellulose. IN: Problems of stable isotopes in tree-rings,
lake sediments and peat-bogs as climatic evidence for the Holocene, B.
Frenzel, B. Stauffer and M.M. Weib (eds.). – Switsur V.R., and
Waterhouse, J.S., 1998. Stable isotopes in tree ring cellulose. In: Stable
Isotopes: The Integration of Biological, Ecological and Geochemical Processes,
edited by Griffiths, H., pp. 303–321. Bios Scientific Publishing, Oxford, UK.
Switsur, V.R., Waterhouse, J.S., Field, E.M. and
Carter, A.H. 1996. Climatic signal from stable isotopes in oak tree rings
from Szczepanek,
M., Pazdur, A., Pawelczyk, S., Bottger, T., Haupt, M., Halas, S., Bednarz,
Z., Krapiec, M. and
Szychowska-Krapiec, E., 2006. Hydrogen, carbon and oxygen
isotopes in pine and oak tree rings from Werner, C., Schnyder, H., Cuntz, M., Keitel, C.,
Zeeman, M.J., Dawson, T.E., Badeck, F.-W., Brugnoli, E., Ghashghaie, J.,
Grams, T.E.E., Kayler, Z.E., Lakatos, M., Lee, X., Maguas, C., Ogee, J.,
Rascher, K.G., Siegwolf, R.T.W., Unger, S., Welker, J., Wingate, L., and
Gessler, A., 2012. Progress and challenges in using stable isotopes to trace
plant carbon and water relations across scales. Biogeosciences 9:3083–3111. Wilson, A.T. and Grinsted, M.J. 1978. The possibilities
of deriving past climate information from stable isotopes on tree rings.
Stable Isotopes in Earth Science. DSIR Bull. 220: 61-66. δ13C in Tree
Rings Ackroyd,
R.G., Lucy, D., Pollard, A.M., Carter, A.H.C. and Robertson, Andreu, L., Planells,
O., Gutiérrez, E., Helle, G., Schleser, G.H., 2008. Climatic significance of
tree-ring width and δ13C in a Spanish pine forest network. Tellus
B 60:771-781,
doi:10.1111/j.1600-0889.2008.00370.x. Andreu-Hayles, L.,
Planells, O., Cardenas Gutierrez, E., Muntán, E., Helle, G., Anchukaitis,
K.J., Schleser, G.H., 2011. Long tree‐ring chronologies reveal 20th
century increases in water‐use efficiency but no enhancement of tree
growth at five Iberian pine forests. Global Change Biology 17(6):2095-2112. Arneth, A., Lloyd, J.,
Šantrůčková, H., Bird, M., Grigoryev, S., Kalaschnikov, Y.N.,
Gleixner, G. and Schulze, E.-D., 2002.
Response of central Siberian Scots pine to soil water deficit and
long-term trends in atmospheric CO2 concentration. Global Biogeochemical Cycles 16(1): 1005, doi:10.1029/2000GB001374. Badeck, F.-W.,
Tcherkez, G., Nogués, S., Piel, C., Ghashghaie, J., 2005. Post-photosynthetic
fractionation of stable carbon isotopes between plant organs—a widespread
phenomenon. Rapid Communications in
Mass Spectrometry 19:
1381–1391. Barber, V.A., Juday,
G.P. and Finney, B.P., 2000. Reduced growth of Alaskan white spruce in the
twentieth century from temperature-induced drought stress. Nature 405: 668-673. Barber, V.A., Juday,
G.P., Finney, B.P. and Wilmking, M., 2004. Reconstruction of summer
temperatures in interior Battipaglia, G., De Micco, V., Brand, W.A., Linke, P., Aronne, G.,
Saurer, M.and Cherubini, P., 2010. Variations of vessel diameter and δ13C
in false rings of Arbutus unedo L.
reflect different environmental conditions. New Phytologist 188: 1099-1112. Battipaglia,
G., Marzaioli, F., Lubritto, C., Altieri, S., Strumia, S., Cherubini, P.,
Cotrufo, M.F., 2010. Traffic pollution
affects tree-ring width and isotopic composition of Pinus pinea. Science of The Total Environment 408(3):586-593. Becker,
B., Kromer, B., and Trimborn, P. 1991. A stable–isotope tree-ring timescale
of the late Glacial-Holocene boundary. Nature 353: 647-649. Belmecheri, S., Maxwell, R.S., Taylor,
A.H., Davis, K.J., Freeman, K.H., and Munger, W.J., 2014. Tree-ring
δ13C tracks flux tower ecosystem productivity estimates in a
NE temperate forest. Environmental Research Letters 9, doi:10.1088/1748-9326/9/7/074011. Bender,
M.M. and Berge, A.J. 1982. Carbon isotope records in Benner,
R., Fogel, M.L., Sprague, E.K. and Hodson, R.E. 1987. Depletion of 13C
in lignin and its implications for stable carbon isotope studies. Nature
329: 368-710. Bert, D., Leavitt, S.W. and Dupouey, J.-L. 1997. Variations of wood δ13C and
water-use efficiency of Abies alba
during the last century. Ecology
78: 1588-1596. Berninger,
F., Sonninen, E., Aalto, T. and Lloyd, J.
2000. Modeling 13C
discrimination in tree rings. Global Biogeochemical Cycles 14: 213-223. Boakye,
E.A., Gebrekirstos, A., Hyppolite, D.N., Barnes, V.R., Porembski, S.,
Bräuning, A., 2019. Carbon Isotopes of riparian forests trees in the savannas
of the Volta Sub-Basin of Ghana reveal contrasting responses to climatic and
environmental variations. Forests 10: 251, https://doi.org/10.3390/f10030251.
Brendel,
O. 2001. Does bulk-needle δ13C reflect short-term
discrimination? Ann. For. Sci. 58: 135-141. Brendel, O., Handley, L. and Griffiths, H., 2003. The δ13C of Scots pine (Pinus
sylvestris L.) needles: spatial and temporal variations. Brendel,
O., Pot, D., Plomion, C., Rozenberg, P. and Guehl, J.-M., 2002. Genetic parameters and QTL analysis of δ13C and ring width in maritime
pine. Plant, Cell Environ. 25: 945-953. Brienen,
R. J. W., Gloor, E., Clerici, S., Newton, R., Arppe, L., Boom, A., Bottrell,
S., Callaghan, M., Heaton, T., Helama, S., Helle, G., Leng, M. J.,
Mielikäinen, K., Oinonen, M., and Timonen, M., 2017. Tree height strongly
affects estimates of water-use efficiency responses to climate and CO2
using isotopes. Nature Comm. 8, DOI: 10.1038/s41467-017-00225-z. Brienen,
R.J.W., Wanek, W., and Hietz, P., 2011.
Stable carbon isotopes in tree rings indicate improved water use
efficiency and drought responses of a tropical dry forest tree species. Trees-Structure
and Function 25:103-113. Bryukhanova,
M. V., Vaganov, E. A., and Wirth, C., 2011. Influence of climatic factors and
reserve assimilates on the radial growth and carbon isotope composition in
tree rings of deciduous and coniferous species. Contemporary Problems of Ecology 4(2): 126-132, DOI: 10.1134/S1995425511020020.
Buhay,
W.M., Timsic, S., Blair, D., Reynolds, J., Jarvis, S., Petrash, D., Rempel,
M., and Bailey, D., 2008. Riparian influences on carbon isotopic composition
of tree rings in the Slave River Bukata,
A.R., Kyser, T.K., 2008. Tree-ring elemental concentrations in oak do not
necessarily passively record changes in bioavailability. Science of The Total Environment 390(1): 275-286 Choi,
W.J., Lee, S.-M., Chang, S.X., and Ro, H.-M., 2005. Variations of δ13C
and δ15N in Pinus
Densiflora tree-rings and their relationship to environmental changes in
eastern Korea. Water, Air, and Soil Pollution 164: 173-187. Choury,
Z., Shestakova, T.A., Himrane, H., Touchan, R., Kherchouche, D., Camarero,
J.J., Voltas, J., 2017. European
Journal of Forest Research 136:139–152,
https://doi.org/10.1007/s10342-016-1014-3. Cooper,
L. and Solis, C., 2003. 18O and 13C in leaf litter versus
tree ring cellulose as proxy isotopic indicators of climate change. In: North American Temperate Deciduous Craig,
H. 1954. Carbon-13 variations in sequoia rings and the atmosphere. Science
119: 141-143. Cregg, B.M., Olivas-Garcia, J.M. and Hennessey, T.C.
2000. Provenance variation in carbon isotope discrimination of mature
ponderosa pine trees at two locations in the D’Alessandro, C. M., M. R., Guerrieri, A. Saracino,
2004. Comparing carbon isotope composition of bulk wood and holocellulose
from Quercus cerris, Fraxinus ornus and Pinus radiata tree rings, Forest@ 1:
51-57. del Castillo,
J., Aguilera, M., Voltas, J., Ferrio, J.P., 2013. Isoscapes of tree‐ring
carbon‐13 perform like meteorological networks in predicting regional
precipitation patterns. Journal of Geophysical Research Biogeosciences
118(1):352-360. del
Castillo, J., Voltas, J., Ferrio, J.P., 2014. Carbon isotope discrimination,
radial growth, and NDVI share spatiotemporal responses to precipitation in
Aleppo pine. Trees‒Structure and Function 29:223-233, doi:10.1007/s00468-014-1106-y. De Micco, V., Battipaglia, G., Brand, W., Linke, P.,
Saurer, M., Aronne, G., Cherubini, P., 2012.
Discrete versus continuous analysis of anatomical and δ13C
variability in tree rings with intra-annual density fluctuations. Trees
26(2):513-524. De Micco, V., Saurer, M., Aronne, G., Tognetti, R. and
Cherubini, P., 2007. Variations of wood anatomy and δ13C
within-tree rings of coastal Pinus
pinaster showing intra-annual density fluctuations. IAWA Journal 28: 61–74. Dongarra, G., and Varrica, D., 2002. δ13C variations in tree
rings as an indication of severe changes in the urban air quality. Atmospheric
Environment 36: 5887-5896. Drake, B.L., Hanson, D.T., Lowrey, T.K., and Sharp,
Z.D., 2017. The carbon fertilization effect over a century of anthropogenic
CO2 emissions: Higher intracellular CO2 and more
drought resistance among invasive and native grass species contrasts with
increased water use efficiency for woody pl ants in the US Southwest, Global
Change Biology 23(2): 782-792, doi: 10.1111/gcb.13449. Drew, D.M., Schulze, E.D., Downes, G.M., 2009. Temporal variation in δ13C,
wood density and microfibril angle in variously irrigated Eucalyptus nitens. Functional Plant Biology 36: 1-10. Duffy, J.E., McCarroll, D., Barnes, A., Bronk Ramsey,
C., Davies, D., Loader, N.J., Miles, D., and Young, G.H.F., 2017. Short-lived juvenile effects observed in
stable carbon and oxygen isotopes of UK oak trees and historic building
timbers. Chemical Geology 472:1-7. Dupouey, J.-L., Leavitt, S., Choisnel, E. and Jourdain,
S., 1993. Modelling carbon isotope
fractionation in tree rings based on effective evapotranspiration and soil
water status. Plant, Cell and Environ. 16: 939-947. Duquesney, A., Edwards, T.W.D., Graf, W., Trimborn, P., Stichler, W.,
Lipp, J. and Payer, H.D., 2000. δ13C response surface resolves humidity
and temperature signals in trees. Geochimica
et Cosmochimica Acta 64:
161-167. Eglin, T., Maunoury-Danger,
F., Fresneau, C., Lelarge, C., Pollet, B., Lapierre, C., Francois, C., and
Damesin, C., 2008. Biochemical composition
is not the main factor influencing variability in carbon isotope composition
of tree rings. Tree Physiology 28(11):
1619-1628. Eilmann, B., Buchmann, N., Siegwolf, R., Saurer, M.,
Cherubini, P., and Rigling, A., 2010.
Fast response of Scots pine to improved water availability reflected
in tree-ring width and δ13C. Plant, Cell and Environ. 33: 1351-1360. Farquhar, G.D., O'Leary, M.H., and Farmer, J.G., 1979. Problems in interpreting tree-ring
δ13C records. Nature 279: 229-231. Farmer, J.G., and Baxter, M.S. 1974. Atmospheric carbon
dioxide levels as indicated by the stable isotope record in wood. Nature
247: 273-275. February, E.C. and Stock, W.D., 1999. Declining trend in the 13C/12C
ratio of atmospheric carbon dioxide from tree rings of South African Widdrintonia cedarbergensis. Quaternary Research 52: 229-236. Feng, X. and Epstein, S. 1995. Carbon isotopes of trees from arid
environments and implications for reconstructing atmospheric CO2
concentrations. Geochimica et
Cosmochimica Acta 59:
2599-2608. Feng, X. and Epstein, S. 1996. Climatic trends from isotopic records of
tree rings: The past 100-200 years. Climatic
Change 33: 551-562. Feng, X. 1998.
Long-term ci/ca response of trees in western Feng, X. 1999. Trends in intrinsic water-use efficiency
of natural trees for the past 100-200 years: A response to atmospheric CO2
concentration. Geochimica et
Cosmochimica Acta 63: 1891-1903. Fernández‐de‐Uńa, L.,
McDowell, N.G., Cańellas, I., Gea‐Izquierdo, G., 2016. Disentangling
the effect of competition, CO2 and climate on intrinsic water‐use
efficiency and tree growth. Journal of Ecology 104:678-690. Ferrio, J.P.,
Florit, A., Vega, A., Serrano, L., and Voltas, J., 2003. δ13C and
tree-ring width reflect different drought responses in Quercus ilex and Pinus
halepensis. Oecologia 137:
512-518. Fichtler, E., Helle, G., Worbes, M., 2010. Stable carbon isotope time series from
tropical tree rings indicate a precipitation signal. Tree-Ring Research 66(1):35-49. Foroozan, Z., Pourtahmasi, K., Bräuning, A., 2015.
Stable oxygen isotopes in juniper and oak tree rings from northern Iran as
indicators for site-specific and season-specific moisture variations. Dendrochronologia
36:33-39. Foroozan, Z., Pourtahmasi, K., Bräuning, A., 2018.
Climatic signals in stable carbon isotope ratios of juniper and oak tree
rings from northern Iran. Global and Planetary Change 165:90-99. Francey, R.J. 1981. Tasmanian tree rings belie suggested
anthropogenic 13C/12C trends. Nature 290: 232-235. Francey, R.J. and Farquhar, G.D., 1982. An explanation of 13C/12C
variations in tree rings. Nature
297: 28-31. Francey,
R.J. and Hubick, K.T., 1988. Tree-ring
carbon-isotope ratios re-examined. Nature 333: 712. Frank, D. C., Poulter, B.,
Saurer, M., Esper, J., Huntingford, C., Helle, G., Treydte, K.,
Zimmerman, N.E. Schleser, G.H. Ahlstrom, A., Ciais, P., 2015. Water-use
efficiency and transpiration across European forests during the Anthropocene.
Nature Climate Change 5:579–583. Freyer,
H.D. 1979. On the 13C record in tree rings. Part 1. 13C
variations in northern hemispheric trees during the last 150 years. Tellus
31: 124-137. Freyer,
H.D. 1979. On the 13C record in tree rings. Part 2. Registration
of microenvironmental CO2 and anomalous pollution effect. Tellus
31: 308-312. Freyer,
H.D. 1981. Recent 13C/12C trends in atmospheric CO2
and tree rings. Nature 293:
679-680. Freyer,
H. D. 1986. Interpretation of the Northern hemispheric record of 13C/12C
trends of atmospheric CO2 in tree rings. In: The Changing Carbon
Cycle: A Global Analysis. Springer-Verlag, 125–150. Freyer,
H.D. and Belacy, N. 1983. 13C/12C records in Northern
Hemispheric trees during the past 500 years- anthropogenic impact and climate
superpositions. Journal of Geophysical Research 88: 6844-6852. Freyer,
H.D. and Wiesberg, L., 1973. 13C-decrease in modern wood due to the large-scale
combustion of fossil fuels. Naturwissenschaften 60: 517-518. Gagen,
M., McCarroll, D. and Edouard, J.-L., 2004.
Latewood
width, maximum density, and stable carbon isotope ratios of pine as climate
indicators in a dry subalpine environment, French Alps.
Arctic, Antarctic and Alpine
Research 36(2):
166–171. Gagen,
M., McCarroll, D. and Edouard, J.-L., 2006. Combining ring width, density,
and stable carbon isotope proxies to enhance the climate signal in
tree-rings: an example from the southern French Alps. Climatic Change 78: 363-379. Gagen,
M., McCarroll, D., Loader, N.J., Robertson, Gagen,
M., McCarroll, D., Robertson, Gagen,
M., Finsinger, W., Wagner-Cremer, F., McCarroll, D., Loader, N.J., Robertson,
I., Jalkanen, R., Young, G., Kirchhefer, A., 2011. Evidence of changing
intrinsic water-use efficiency under rising atmospheric CO2
concentrations in Boreal Fennoscandia from subfossil leaves and tree ring d13C
ratios. Global Change Biology 17:1064–1072. Gagen,
M.H., Zorita, E., McCarroll, D., Young, G.H.F., Grudd, H., Jalkanen, R.,
Loader, N.J., Robertson, I. and Kirchhefer, A.J., 2011. Cloud response to
summer temperatures in Fennoscandia over the last thousand years. Geophysical
Research Letters 38.
doi:10.1029/2010GL046216. Galle,
A., Esper, J., Feller, U., Ribas-Carbo, M. and Fonti, P., 2010. Responses of
wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of
summer drought. Annals of Forest Science 67(8), doi:10.1051/forest/2010045. Gebrekirstos, A., van Noordwijk, M., Neufeldt,
H. and Mitlöhner, R., 2011. Relationships of stable carbon isotopes, plant
water potential and growth: an approach to asses water use efficiency and
growth strategies of dry land agroforestry species. Trees-Structure and
Function 25: 95-102. Gebrekirstos, A., Worbes, M., Teketay, D.,
Fetene, M., Mitlöhner. R., 2009. Stable carbon isotope
ratios in tree rings of co-occurring species from semi-arid tropics in Gerhart,
L.M., Harris, J.M., Nippert, J.B., Sandquist, D.R., Ward, J.K., 2012. Glacial
trees from the La Brea tar pits show physiological constraints of low CO2.
New Phytologist 194:63-69. Gomez,
A., Singer, M.J., Powers, R.F., and Horwath, W.R., 2002. Soil compaction
effects on water status of ponderosa pine assessed through 13C/12C
composition. Tree Physiology 22(7):459-67. Grinsted,
M.J. and Grinsted,
M.J., Guy,
D.D. and Holowachuk, D.L., 2001.
Population differences in stable carbon isotope ratio of Pinus contorta Dougl. ex Loud.: Relationship to environment, climate of origin,
and growth potential. Canadian J.
Botany 79: 274-283. Haavik, L., Stephen, F.,
Fierke, M., Hafner, P., Gričar,
J., Skudnik, M., and Levanič, T., 2015. Variations in environmental
signals in tree-ring indices in trees with different growth potential. PLoS
One 10(11):e0143918. Hafner, P., McCarroll,
D., Robertson, I., Loader, N., Gagen, M., Young, G., Bale, R., Sonninen, E.,
and Levanič, T., 2014. A 520 year record of summer sunshine for the
eastern European Alps based on stable carbon isotopes in larch tree rings. Climate
Dynamics 43:971-980. doi:10.1007/s00382-013-1864-z. Hanba, Y.T., Matsui, K.
and Wada, E., 1996. Solar radiation affects modern tree-ring δ13C: Observations at a cool-temperate forest in Japan. Isotopes in Environmental and Health
Studies 32: 55-62 Harkness,
D.D. and Miller, B.F. 1980. Possibility of climatically induced variations in
the 14C and 13C enrichment patterns as recorded by a
300-year-old Norwegian pine. Radiocarbon
22: 291-298. Heinrich, I.,
Touchan, R., Dorado Lińán, I., Vos, H., Helle, G., 2013. Winter-to-spring
temperature dynamics in Turkey derived from tree rings since AD 1125. Climate
Dynamics 41:1685–1701, DOI:
10.1007/s00382-013-1702-3. Helama, S., Arppe, L., Timonen, M., Mielikäinen, K., and Oinonen, M., 2015. Age-related trends in subfossil tree-ring δ13C data. Chemical Geology 416:28–35. doi:10.1016/j.chemgeo.2015.10.019. Helle, G. and Schleser, G.H., 2004. Beyond CO2-fixation by Rubisco –
an interpretation of 13C/12C variations in tree rings
from novel intra-seasonal studies on broad-leaf trees. Plant, Cell and Environment 27:367–380. Helle, G., Schleser,
G.H., and Bräuning, A. 2002. Climate history of the Tibetan Plateau for the
last 1500 years as inferred from stable carbon isotopes in tree-rings. In:
Study of Environmental Change using Isotope Techniques. International Atomic
Energy Agency, IAEA-CN-80/80, C&S Papers Series 13, p. 301-311. Hemming, D., Fritts, H.,
Leavitt, S.W., Wright, W., Long, A., and Shashkin, A., 2001. Modelling tree-ring δ13C. Dendrochronologia 19(1): 23-38. Hemming, D.L., Switsur, V.R., Waterhouse, J.S.,
Heaton, T.H.E., and Carter, A.H.C. 1998. Climate variation and the stable
carbon isotope composition of tree ring cellulose: An intercomparison of Quercus robur, Fagus sylvatica and Pinus silvestris. Tellus 50B: 25-33. Hereş, A.M.,
Voltas, J., López, B.C., and Martínez-Vilalta, J., 2014. Drought-induced
mortality selectively affects Scots pinetrees that show limited intrinsic
water-use efficiencyresponsiveness to raising atmospheric CO2. Functional
Plant Biology 41:244–256. Hietz, P., Wanek, W.
and Dünisch, O., 2005. Long-term trends in cellulose δ13C and
water-use efficiency of tropical Cedrela
and Swietenia from Brazil. Tree
Physiology 25:745–752 Huang Y., Eglinton,
G., Ineson, P., Bol. R., and Harknesss, D., 1999. The effects of nitrogen
fertilisation and elevated CO2 on the lipid biosynthesis and
carbon isotopic discrimination in birch seedlings (Betula pendula). Plant
and Soil 216: 35-45. Hou,
Aimin, Peng, S., Zhou, G., and Wen, D., 2001.
Re-examining the reliability of tree-ring isotope ratio as a
historical CO2 proxy. Chinese Science Bulletin 48: 17-21. Hultine, K.R., Dudley,
T.L., and Leavitt, S.W., 2013. Herbivory-induced mortality increases with
radial growth in an invasive riparian phreatophyte. Annals of Botany 11(6):1197-206, doi:
10.1093/aob/mct077. Hultine,
K.R., Marshall, J.D. 2000. Altitude trends in conifer leaf morphology and
stable carbon isotope composition. Oecologia 123: 32-40. Jäggi, M., Saurer,
M., Fuhrer and Siegwolf, R. 2002. The relationship between the stable carbon
isotope composition of needle bulk material, starch, and tree rings in Picea abies. Oecologia 131: 325-332. Jansen, H.S., 1962. Depletion of carbon-13 in young kauri
trees. Nature 196: 84-85. Jedrysek, M.O., Skrzypek, G., Kaluzny,
A, Krapiek, M., Halas, S. and. Pazdur, A., 1998. Paleotemperature scale δ13C record in tree rings, δ13C record in a peat core: why do they correlate? Materials and Geoenvironment 45: 99-106. Jedrysek, M.O.,
Krapiek, M., Skrzypek, G., and Kauzny, A., 2003. Air-pollution effect and
paleotemperature scale versus records in tree rings and in a peat core ( Kagawa, A., Leavitt,
S.W., 2010. Stable carbon isotopes of tree rings as a tool to pinpoint timber
geographic origin. J. of Wood Science, doi: 10.1007/s10086-009-1085-6.
Special Issue “Wood Science and Technology for Mitigation of Global Warming”. Kagawa A., Naito D.,
Sugimoto A., and Maximov T.C., 2003. Effects of spatial and temporal
variability in soil moisture on widths and δ13C values of eastern Siberian tree rings. Journal
of Geophysical Research 108 (D16): 4500. doi:10.1029/2002JD003019. Kagawa A., Sugimoto
A., and Maximov T.C., 2006. 13CO2 pulse-labelling of
photoassimilates reveals carbon allocation within and between tree rings. Plant,
Cell and Environment 29: 1571–1584 Kagawa A., Sugimoto A.,
and Maximov T.C., 2006. Seasonal course of translocation, storage and
remobilization of C-13 pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. New
Phytologist 171: 793-804. Kagawa A., Sugimoto
A., Yamashita K., and Abe H., 2005. Temporal photosynthetic carbon isotope
signatures revealed in a tree ring through 13CO2 pulse-labelling. Plant,
Cell and Environment 28: 906-915. Keller,
K.M. Lienert, S., Bozbiyik, A., Stocker, T.F., Churakova (Sidorova), O.V.,
Frank, D.C., Klesse, S., Koven, C.D., Leuenberger, M., Riley, W.J., Saurer,
M., Siegwolf, R., Weigt, R.B., and Joos, F., 2017. 20th century changes in
carbon isotopes and water-use efficiency: tree-ring based evaluation of the
CLM4.5 and LPX-Bern models. Biogeosci. 14: 2641–2673,
https://doi.org/10.5194/bg-14-2641-2017. Kirdyanov,
A.V., Treydte, K.S., Nikolaev, A., Helle, G. and Schleser, G.H., 2008.
Climate signals in tree-ring width, density and δ13C from
larches in Eastern Siberia (Russia). Chemical Geology 252:31-41. Kitagawa,
H. and Matsumoto, E. 1993. δ13C records of Japanese cedars from
Yakushima Island and past atmospheric CO2. Geochemical Journal
27: 397-402. Klein, T., Hemming, D., Lin, T.B., Grünzweig, J.M.,
Maseyk, K., Rotenberg, E. and Yakir, D., 2005.
Association between tree-ring and needle δ13C and leaf gas
exchange in Pinus halepensis under
semi-arid conditions. Oecologia 144:
45-54. Koretsune,
S., Fukuda, K., Chang, Z., Shi, F. and Ishida, A., 2009. Effective rainfall
seasons for interannual variation in δ13C and tree-ring width
in early and late wood of Chinese pine and black locust on the Loess Plateau,
China. Journal of Forest Research 14:
88-94. Krepkowski, J.,
Gebrekirstos, A., Shibistova, O., Bräuning, A., 2013. Stable carbon isotope
labeling reveals different carry-over effects between functional types of
tropical trees in an Ethiopian mountain forest. New Phytologist 199(2):431-440. Kress, A., Young, G.H.F.,
Saurer, M., Loader, N.J., Siegwolf, R.T.W. and McCarroll, D., 2009.
Stable isotope coherence in the earlywood and latewood of tree‐line conifers. Chem. Geol. 268:
52–57. Krishnamurthy,
R.V. 1996. Implications of a 400 year tree ring based 13C/12C
chronology. Geophysical Research
Letters 23: 317-374. Krishnamurthy,
R.V. and Machavaram, M., 2000. Is
there a stable isotope evidence for the CO2
fertilization effect? Proc. Indian
Acad. Sci. (Earth Planet. Sci.) 109:
141-144. Leavitt,
S.W., 1993. Environmental Information
from 13C/12C ratios of wood. Geophysical Monograph 78:325-331 (Amer. Geophys. Leavitt, S.W. 1993.
Seasonal 13C/12C changes in tree rings: species and site coherence, and a possible
drought influence. Canadian Journal of Leavitt, S.W. 1994.
Major wet interval in White Mountains Medieval Warm Period evidenced
in δ13C of bristlecone pine tree rings. Climatic Change 26: 299-307. Leavitt,
S.W., 2001. Seasonal response of
δ13C in Pinus
resinosa Ait. seedling growth rings to changing
environment in controlled growth experiments.
Dendrochronologia 19(1):
9-22. Leavitt, S.W., 2002.
Prospects for reconstruction of seasonal environment from tree-ring δ13C:
Baseline findings from the Great Lakes area, U.S.A. Chemical Geology 192(1-2): 47-58. Leavitt, S.W., 2007.
Regional expression of the 1988 U.S. Midwest drought in seasonal δ13C
of tree rings. Journal of Geophysical Research- Atmospheres 112, D06107, doi:10.1029/2006JD007081. Leavitt, S.W., 2008.
Tree-ring isotopic pooling without regard to mass: No difference from
averaging δ13C values of individual trees. Chemical Geology 252:52–55. Leavitt, S.W. and
Baisan, C.H., 2001. Variability of
seasonal δ13C patterns
in Apache pine from southern Arizona, USA.
The Palaeobotanist 50(1):
117-123. Leavitt, S.W., Chase,
T.N., Rajagopalan, B., Lee, E., Leavitt, S.W., Chase,
T.N., Rajagopalan, B., Lee, E., Leavitt,
S.W., Hughes, M.K., Yu, L. and Zhisheng, A., 1995. Stable-carbon isotope
tree-ring chronologies from Xian, Leavitt, S.W., Idso,
S.B., Kimball, B.A., Burns, J.M., Sinha, A. and Stott, L., 2003. The effect of long-term atmospheric CO2
enrichment on the intrinsic water-use efficiency of sour orange trees. Chemosphere: Global Change Science 50(2): 217-222. Leavitt,
S.W. and Kalin, R.M., 1992. A new
tree-ring width, δ13C and 14C investigation of the
Two Creeks site. Radiocarbon 34:792-797. Leavitt, S.W. and Lara, A. 1994. South American tree rings show declining
δ13C trend. Tellus
46B: 152-157. Leavitt,
S.W., Liu, Y., Hughes, M.K., Liu, R., An, Z., Gutierrez, G.M., Danzer, S.R.
and Shao, X., 1995. A single-year δ13C chronology from Pinus tabulaeformis (Chinese pine)
tree rings at Huangling, China. Radiocarbon
37: 605-610. Leavitt,
S.W. and Long, A., 1982. Evidence for 13C/12C
fractionation between tree leaves and wood.
Nature 298:742-744. Leavitt,
S.W. and Long, A., 1983. An atmospheric 13C/12C
reconstruction generated through removal of climate effects from tree-ring 13C/12C
measurements. Tellus 35B:
92-102. Leavitt, S.W. and Long, A. 1984. Sampling strategy for stable carbon isotope
analysis of tree rings in pine. Nature
311: 145-147. Leavitt,
S.W. and Long, A., 1985. The global
biosphere as net CO2 source or sink: evidence from carbon isotopes in tree rings.
In Planetary Ecology, Leavitt, S.W. and Long, A. 1986. Stable-carbon isotope variability in tree
foliage and wood. Ecology 67: 1002-1010. Leavitt,
S.W. and Long, A., 1986. Trends of 13C/12C
ratios in pinyon pine tree rings of the American southwest and the global
carbon cycle. Radiocarbon 28: 376-382. Leavitt, S.W. and Long, A. 1988. Stable carbon isotope chronologies from
trees in the southwestern Leavitt,
S.W. and Long, A., 1989. Intertree
variability of δ13C
in tree rings. In Stable Isotopes in Ecological Research, Rundel, P.W.,
Ehleringer, J.R., and Nagy, K.A., eds.
Leavitt, S.W. and Long, A. 1989. Drought indicated in carbon-13/carbon-12
ratios of southwestern tree rings. Water
Resources Bulletin 25: 341-347. Leavitt,
S.W. and Long, A., 1989. The
atmospheric δ13C record as derived
from 56 pinyon trees at 14 sites in the southwestern U.S. Radiocarbon 31:469-474. Leavitt, S.W. and Long, A. 1991. Seasonal stable-carbon isotope variability
in tree rings: possible paleoenvironmental signals. Chemical Geology (Isotope Geoscience
Section) 87: 59-70. Leavitt,
S.W. and Long, A., 1992. Altitudinal
differences in δ13C of bristlecone pine. Naturwissenschaften
79:178-180. Leavitt,
S.W., Long, A. and Dean, J.S., 1985.
Tree-ring dating through pattern-matching of stable-carbon isotope time
series. Tree-Ring Bulletin 45:1-9. Leavitt,
S.W., Wright, W.E. and Long, A., 1998.
ENSO signal in δ13C
of pre‑ and post‑False
Latewood of ponderosa Pine Tree Rings in Leavitt, S.W., Wright,
W.E., Long, A., 2002. Spatial
expression of ENSO, drought and summer monsoon in seasonal δ13C
of ponderosa pine tree rings in southern Arizona and New Mexico. J.
Geophys. Res. 107 (D18) 4349, doi:10.1029/2001JD001312. Leffler, A.J. and
Evans, A.S., 1999. Variation in carbon isotope composition among years in the
riparian tree Populus fremontii. Oecologia
119: 311-319 Leonardi, S.,
Gentilesca, T., Guerrieri, R., Ripullone, F., Magnani, F., Mencuccini, M., Noije,
T. V., and Borghetti, M., 2012. Assessing the effects of nitrogen deposition
and climate on carbon isotope discrimination and intrinsic water-use
efficiency of angiosperm and conifer trees under rising CO2
conditions. Global Change Biology 18:2925-2944. Levanič, T.,
Čater, M., and McDowell, N.G., 2011.
Associations between growth, wood anatomy, carbon isotope
discrimination and mortality in a Quercus
robur forest. Tree Physiology
31(3): 298-308. Levanič, T.,
Gričar, J., Gagen, M., Jalkanen, R., Loader, N.J., McCarroll, D., Oven,
P., and Robertson, I., 2009. The
climate sensitivity of Norway spruce [Picea
abies (L.) Karst.] in the southeastern European
Alps. Trees 23(1): 169-180. Li, Z.-H., Leavitt, S.W.,
Mora, C.I. and Liu, R.-M., 2005. Influence of earlywood–latewood size and
isotope differences on long-term tree-ring δ13C trends. Chemical
Geology 216: 191-2001. Linares, J. C., and Camarero, J.J., 2012. From pattern
to process: linking intrinsic water -use efficiency to drought
drought-induced forest decline. Global Change Biology 18(3):1000-1015, doi: 10.1111/j.1365
1365-2486.2011.02566.x. Linares,
J.C., Delgado-Huertas, A., Camarero, J.J., Merino, J., Carreira, J.A., 2009.
Competition and drought limit the response of water-use efficiency to rising
atmospheric carbon dioxide in the Mediterranean fir Abies pinsapo. Oecologia 161:611-624. Liu, Y., Ma, L.M., Cai,
Q.F., An, Z.S., Liu, W.G., Gao, L.Y., 2002. Reconstruction of summer
temperature (June-August) at Liu, Y., Ma, L.,
Leavitt, S.W., Cai, Q., and Liu, W., 2004.
A preliminary seasonal precipitation reconstruction from tree-ring
stable carbon isotopes at Mt. Helan, Liu, Y., Wang, Y., Li, Q., Song, H., Linderhlom, H.W.,
Leavitt, S.W., Wang, R., and An, Z., 2014. Treering stable carbon
isotope-based May-July temperature reconstruction over Nanwutai, China, for
the past century and its record of 20th century warming. Quaternary
Science Reviews 93:67–76
doi:10.1016/j.quascirev.2014.03.023. Liu, X., Shao, X., Liang, E., Zhao, L., Chen, T., Qin,
D., and Ren, J., 2007. Species-dependent responses of juniper and spruce to
increasing CO2 concentration and to climate in semi-arid and arid
areas of northwestern Liu, X.H., Qin, D.H., Zhao, X.M., Chen, T., Ren, J.W.,
2003. Climatic significance of stable carbon isotope in tree rings of Abies
spectabilis in southeastern Liu, X., Zhao, L., Chen,
T., Shao, X., Liu, Q., Hou, S., Qin, D., An, W., 2011. Combined tree-ring width and δ13C to reconstruct
snowpack depth: A pilot study in the Gongga Mountain, west China. Theor.
Appl. Climatol. 103: 133-144. Liu X., Shao, X. Wang, L.
Liang, E. Qin, D., Ren, J. 2008. Response and dendroclimatic
implications of δ13C in tree rings to increasing drought on
the northeastern Tibetan Plateau, J. Geophys. Res., 113, G03015, doi:10.1029/2007JG000610.
Livingston, Loader, N.J.,
McCarroll, D., Barker, S., Jalkanen, R., and Grudd, H., 2017. Inter-annual carbon isotope analysis of
tree-rings by laser ablation. Chemical Geology 466: 323-326. Loader, N.J.,
Robertson, Loader, N.J. and Switsur, V.R. 1995. Reconstructing past environmental change
using stable isotopes in tree-rings. Bot. J. Scotl. 48:
65-78. Loader, N.J., Switsur, V.R. and Field, E.M. 1995. High-resolution stable isotope analysis of
tree rings: implications of 'microdendroclimatology' for palaeoenvironmental
research. The Holocene 5: 457-460. Loader, N.J., Switsur, V.R., Field, E.M. and Carter,
A.H.C. 1999. Stable isotope
dendroclimatology helps shed light on dark age environmental change. Dendrochronologia
16-17: 163-170. Loader, N.J., Walsh, R.P.D., Robertson, I., Bidin, K.,
Ong, R.C., Reynolds, G., McCarroll, D., Gagen, M., Young, G.H.F., 2011. Recent trends in the intrinsic water-use
efficiency of ringless rainforest trees in Borneo. Philosophical
Transactions of the Royal Society B: Biological Sciences 366(1582): 3330-3339. Loader, N.J., Young, G.H.F., Grudd, H., McCarroll, D.,
2013. Stable carbon isotopes from
Torneträsk, northern Sweden provide a millennial length reconstruction of
summer sunshine and its relationship to Arctic circulation. Quaternary
Science Reviews 62: 97–113. MacIntyre, F. 1979. Carbon-13 in tree-rings indicates
no record of sea-surface temperature. Science 205: 1127-1129. Managave, S., Shimla, P., Borgaonkar,
H.P., Bhattacharyya, A., Ramesh,
R., 2017. Regional differences in the carbon isotopic compositions of teak
from two monsoonal regimes of India. Dendrochronologia 44: 203–210. Marshall, J.D. and Monserud, R.A. 1996. Homeostatic gas-exchange parameters
inferred from 13C/12C in tree rings of conifers. Oecologia 105: 13-21. Martin, B. and Sutherland, E.K. 1990. Air pollution in
the past recorded in width and composition of stable carbon isotopes of
annual growth rings of Douglas-fir. Plant, Cell, and Environment
13:839-844. Martin‐Benito, D., Del Rio, M., Heinrich, I.,
Helle, G., Canellas, I., 2010. Response of climate–growth relationships and
water use efficiency to thinning in a Pinus
nigra afforestation. Forest Ecology and Management 259:967–975. Maseyk, K., Hemming, D., Angert, A., Leavitt, S.W., Yakir,
D., 2011. Increase in water-use efficiency and underlying processes in pine
forests across a precipitation gradient in the dry Mediterranean region over
the past 30 years. Oecologia 167: 573-585. Matsumoto, E. and Kitigawa, H., 1995. Climatic implications of δ13C
variations in a Japanese cedar Cryptomeria
japonica) during the last two millennia.
In:
Tree Rings, From the Past to the Future, Proc. of the Intl. Workshop on Asian
and Pacific Dendrochronology (March 4-9, 1995). S. Ohta, T. Fujii, N. Okada,
M.K. Hughes and D. Eckstein (eds.), Forestry and Forest Products Research
Institute Scientific Meeting Report ISSN 1341-1969, Tsukuba, Japan, p.
170-175. Mazany,
T., Lerman, J.C. and Long, A. 1980. Carbon-13 in tree-ring cellulose as an
indicator of past climates. Nature 287: 432-434. McCarroll, D., Gagen, M., Loader, N.J., Robertson, McCarroll, D., Gagen, M., Loader, N.J., Robertson, McCarroll, D., Jalkanen, R., Hicks, S., Tuovinen M.,
Gagen, M., Pawallek, F., Eckstein, D., Schmitt, U., Autio J. and Heikkinen,
O. 2003. Multiproxy dendroclimatology:
A pilot study in northern McCarroll, D. and Pawallek, F., 1998. Stable carbon isotope ratios of latewood
cellulose in Pinus sylvestris from
northern McCarroll, D., and Pawellek, F., 2001. Stable carbon
isotope ratios of Pinus sylvestris
from northern McCarroll, D., Tuovinen,
M., Campbell, R., Gagen, M., Grudd, H., Jalkanen, R., Loader, N. J. and
Robertson, I., 2011. A critical evaluation of multi-proxy dendroclimatology
in northern Finland. J. Quaternary Sci. 26: 7-14. McCarroll, D., Whitney, M., Young, G.H.F., Loader,
N.J., and Gagen M.H. 2017. A simple stable carbon isotope method for
investigating changes in the use of recent versus old carbon in oak. Tree
Physiology. 10.1093/treephys/tpx030. McCormac, F.G., Baillie, M.G.L., Pilcher, J.R., Brown,
D.M. and Hoper, S.T., 1994. δ13C
measurement from the Irish oak chronology.
Radiocarbon 36:
27–35. McDowell, N.G., McDowell, N.G., Allen, C.D., and Marshall L., 2010.
Growth, carbon-isotope discrimination, and drought drought-associated
mortality across a Pinus ponderosa
elevational transect. Global Change Biology 16(1): 399-415, doi: 431
10.1111/j.1365-2486.2009.01994.x. McDowell, N.G., Brooks, J.R., Fitzgerald, S.A., and Bond, B.J., 2003.
Carbon isotope discrimination and growth response of old Pinus ponderosa trees
to stand density reductions. Plant, Cell and Environment 26:
631-644. McNulty, S.G. and Swank, W.T. 1995. Wood δ13C as a measure of
annual basal area growth and soil water stress in a Pinus strobus forest. Ecology
76: 1581-1586. Michelot, A., Eglin, T., Dufręne, E.,
Lelarge-Trouverie, C., Damesin, C., 2011. Comparison of seasonal variations
in water-use efficiency calculated from the carbon isotope composition of
tree rings and flux data in a temperate forest. Plant, Cell and Environment 34: 230-244. Monserud, R.A. and Marshall, J.D., 2001. Time-series analysis of δ13C
from tree rings. I. Time trends and autocorrelation. Tree Physiology 21: 1087-1102. Newberry, T.L., 2010.
Effect of climatic variability on δ13C and tree-ring
growth in pińon pine (Pinus edulis).
Trees-Structure and Function 24:551-559. Nguyen-Queyrens, A., Ferhi, A., Loustau, D. And Guehl,
J.-M. 1998. Within-ring δ13C spatial variability and
interannual variations in wood cellulose of two contrasting provenances of Pinus pinaster. Niemela, P., Lumme, Norström,
E., Holmgren, K. and Mörth, M., 2005. Rainfall-driven variations in δ13C composition and wood
anatomy of Breonadia salicina trees
from South Africa between AD 1375 and 1995. South African Journal of
Science 101:162–168. Novak,
K., Cherubini, P., Saurer, M., Fuhrer, J., Skelly, J.M., Kräuchi, and M.
Schaub, N., 2007. Ozone air pollution
effects on tree-ring growth, δ13C, visible foliar injury and
leaf gas exchange in three ozone-sensitive woody plant species, Tree
Physiology 27(7):941-949. Nozaki,
Y., Ogle, N. and McCormac, F.G. 1994. High-resolution
δ13C measurements of oak show a previously unobserved spring
depletion. Geophysical Research
Letters 21: 2373-2375. Ogle N., Turney C., Kalin R., O'Donnell L. and Ohashi,
S., Okada, N., Nobuchi, T., Siripatanadilok, S. and Veenin, T., 2009.
Detecting invisible growth rings of trees in seasonally dry forests in
Thailand: isotopic and wood anatomical approaches. Trees-Struct. Funct.
23: 813-822. Okada,
N., Fujiwara, T., Ohta, S. and Matsumoto, E., 1995. Stable carbon isotopes of
Chamaecyparis obtusa grown at a high altitude region in Park, W.-K., Choi,
W.S., Okada, N., Fujiwara, T., Ahn, W.Y. and Ohta, S. 1995.
Dendrochronological study on global warming in Far East: Ring width, density
and δ13C analysis of Pinus
koraiensis from Mt. Sorak, Panek, J.A. 1996. Correlations between stable
carbon-isotope abundance and hydraulic conductivity in Douglas-fir across a
climate gradient in Panek,
J.A. and Waring, R.H., 1995. Carbon
isotope variation in Douglas-fir foliage: Improving the δ13C-climate relationship. Tree Physiology 15: 657-663. Panek, J.A. and Waring, R.H. 1997. Stable carbon isotopes as indicators of
limitations to forest growth imposed by climate stress. Ecological Applications 7: 854-863. Pate, J. and Arthur,
D., 1998. δ13C
analysis of phloem sap carbon: novel means of
evaluating seasonal water stress and interpreting carbon isotope signatures
of foliage and trunk wood of Eucalyptus
globules, Oecologia 117: 301-311. Pawelczyk, S. and
Pazdur, A., 2004. Carbon isotopic composition of tree rings as a tool for
biomonitoring CO2 level. Radiocarbon 46(2): 701-719. Pawelczyk, S., Pazdur,
A., and Halas, S., 2004. Stable carbon isotopic composition of tree rings
from a pine tree from Augustów wilderness, Pazdur, A., Korput, S., Fogtman, M., Szczepanek, M.,
Halas, S., Krapiec, M. and Szychowska-Krapiec, E., 2005. Carbon-13 in
alpha-cellulose of oak latewood (Jedrzejow, Pazdur, A., Nakamura, T., Pawelczyk, S., Pawlyta, J.,
Piotrowska, N., Rakowski, A., Sensula, B., Szczepanek, M., 2007. Carbon
isotopes in tree rings: Climate and the Suess Effect interferences in the
last 400 years. Radiocarbon 49: 775-788. Pearman, G.I., Francey, R.J. and Fraser, P.J. 1976.
Climatic implications of stable carbon isotopes in tree rings. Nature 260: 771-773. Peng, T.H., Broecker, W.S., Freyer, H.D. and Trumbore,
S. 1983. A deconvolution of the
tree-ring based δ13C record.
J. Geophys. Res. 88:
3609-3620. Peńuelas, J., Canadell, J.G. and Ogaya, R., 2010. Increased water-use efficiency during the
20th century did not translate into enhanced tree growth. Global Ecology and
Biogeography 20: 597–608. doi:10.1111/j.1466-8238.2010.00608.x. Peńuelas, J., Hunt, J.M., Ogaya, R., and Jump, A.S.,
2008. Twentieth century changes of tree-ring δ13C at the
southern range-edge of Fagus sylvatica:
increasing water-use efficiency does not avoid the growth decline induced by
warming at low altitudes. Global Change Biology 14: 1076-1088. Ponton, S., Dupouey, J.-L., Porte, A. and Loustau,
D., 2001. Seasonal and interannual variations in carbon isotope
discrimination in a maritime pine (Pinus
pinaster) stand assessed from the isotopic composition of cellulose in
annual rings. Tree Physiology 21: 861-868. Potts,
D.L. and Williams, D.G., 2004.
Response of tree ring holocellulose δ13C to moisture availability in Populus
fremontii at perennial and intermittent stream reaches. Western North American Naturalist 64: 27-37. Qian, J., Lu, J, Tu, Q., and Wang, S.,
2002. Reconstruction of the climate in
the Tianmu Mountain area, Zhejiang Province, in the last 160 years by δ13C
sequence of tree ring a-cellulose. Science
in Rasheed, F.,
Richard, B., Le Thiec, D., Montpied, P., Paillassa, E., Brignolas, F., and
Dreyer, E., 2011. Time course of δ13C in poplar wood:
Genotype ranking remains stable over the life cycle in plantations despite
some differences between cellulose and bulk wood. Tree Physiology 31(11):1183-1193, doi:
10.1093/treephys/tpr108. Rinne, K.T.,
Saurer, M., Kirdyanov, A.V., Bryukhanova, M.V., Prokushkin, A.S., Churakova
Sidorova, O.V., Siegwolf, R.T., 2015. Examining the response of needle
carbohydrates from Siberian larch trees to climate using compound-specific δ13C
and concentration analyses. Plant
Cell Environ. 38(11):2340-52. Rinne, K.T.,
Saurer, M., Kirdyanov, A.V., Loader, N.J., Bryukhanova, M.V., Werner, R.A.,
Siegwolf, R.T., 2015. The relationship
between needle sugar carbon isotope ratios and tree rings of larch in
Siberia. Tree Physiology 35(11):1192-205.
Robertson, I.,
Loader, N.J., Robertson, Robertson, Robertson, Robertson, Robertson, Rongmo, L., Weijian, Z., Yu, L., Fuqing, S., Mingfu, Z.
and Head, J., 1988. Measurements of
the width and the ratio of stable carbon isotopes of tree rings from ancient Abies in Xianyang. China Quaternary Research 80: 26-30 (English abstract). Roupsard, O., Joly, H.I. and Dreyer, E. 1998.
Variability of initial growth, water-use efficiency and carbon isotope
discrimination in seedlings of Faidherbia
albida ( Rowell, D.M., Ades, P.K., Tausz, M., Arndt, S.K. and
Adams, M.A., 2009. Lack of genetic variation in tree ring δ13C
suggests a uniform, stomatally-driven response to drought stress across Pinus radiata genotypes. Tree
Physiology 29: 191-198. Sakata, M. and Suzuki, K., 1998. Assessment method for environmental
stresses in trees using δ13C records of annual growth rings. Geochemical
Journal 32: 331-338. Sakata, M. and Suzuki, K., 2000. Evaluating causes for the decline of
Japanese fir (Abies firma) forests
based on δ13C records of annual growth rings. Environ.
Sci. Technol. 33: 373-376. Sakata, M., Suzuki, K. and Koshiji, T., 2001. Variations of wood δ13C for
the past 50 years in declining Siebold’s beech (Fagus crenata) forests. Environmental
and Experimental Bot. 45:
33-41. Sass-Klaassen, U.,
Poole, Saurer, M., Cherubini, P., Bonani, G.
and Siegwolf, R., 2003. Tracing carbon uptake from
a natural CO2 spring into tree rings: an isotope approach. Tree
Physiology 23:
997–1004. Saurer, M. and Siegenthaler, U. 1989. 13C/12C ratios in
tree are sensitive to relative humidity. Dendrochronologia 7: 9-13. Saurer, M., Siegenthaler, U. and Schweingruber, F.
1995. The climate-carbon isotope relationship in tree rings and the significance
of site conditions. Tellus 47B: 320-330. Saurer, M., Borella,
S., Schweingruber, F. and Siegwolf, R., 1997.
Stable carbon isotopes in tree
rings of beech: Climatic versus site-related influences. Trees 11: 291-297. Saurer, M.,
Siegwolf, R.T.W., and Schweingruber, F.H., 2004. Carbon isotope
discrimination indicates improving water-use efficiency of trees in northern Saurer, M., Spahni, R., Frank,
D.C., Joos, F., Leuenberger, M., Loader, N.J., McCarroll, D., Gagen, M.,
Poulter, B., Siegwolf, R.T.W., Andreu-Hayles, L., Boettger, T., Dorado Lińán,
I., Fairchild, I.J., Friedrich, M., Gutierrez, E., Haupt, M., Hilasvuori, E.,
Heinrich, I., Helle, G., Grudd, H., Jalkanen, R., Levanič, T.,
Linderholm, H.W., Robertson, I., Sonninen, E., Treydte, K., Waterhouse, J.S.,
Woodley, E.J., Wynn, P.M., and Young, G.H.F., 2014. Spatial variability and
temporal trends in water-use efficiency of European forests. Global Change
Biology 20:3700–3712.
doi:10.1111/gcb.12717. Savard, M.M., Begin, C., Parent, M., 2002. Are
industrial SO2 emissions reducing CO2 uptake by the
Boreal Forest? Geology 30: 403-406. Savard, M.M., Begin, C., Parent, M., Smirnoff, A. and
Marion, J., 2004. Effects of smelter sulfur dioxide emissions: A
spatiotemporal perspective using carbon isotopes in tree rings. J.
Environmental Quality 33:
13-25. Schleser, G.H., 1990. Investigations of the δ 13C
pattern in leaves of Fagus sylvatica
L. J. Exp. Botany 41: 565-572. Schleser,
G.H., 1992. δ13C
pattern in a forest tree as an indicator of carbon transfer in trees. Ecology 73: 1922-1925. Schleser, G.H., 1994. Causes of carbon isotope behavior
within tree rings. In Proceedings of
the Workshop, Tree-Ring Development, Cell Structure and Environment, Schleser, G.H., Anhuf, D., Helle, G., and Vos, H.,
2015. A remarkable relationship of the stable carbon isotopic compositions of
wood and cellulose in tree-rings of the tropical species Cariniana micrantha (Ducke) from Brazil. Chemical Geology
401:59-66. Schleser, G.H.,
Frielingsdorf, J. and Blair, A. 1999. Carbon isotope behavior in
wood and cellulose during artificial aging. Chemical Geology 158: 121-130. Schleser, G.H., Helle, G., Lucke, A. and Vos, H. 1999.
Isotope signals as climate proxies: the role of transfer function in the
study of terrestrial archives. Quaternary Science Review 18: 927-943. Schubert, B.A., and Jahren, A.H., 2011.
Quantifying seasonal precipitation using high-resolution carbon isotope
analyses in evergreen wood. Geochimica et Cosmochimica Acta 75:
7291-7303. Schubert, B.A., Jahren, A.H., Eberle, J.J.,
Sternberg, L.S.L., and Eberth, D.A., 2012. A summertime rainy season in the
Arctic forests of the Eocene. Geology, doi: 10.1130/G32856.1 Schulze, B., Wirth, C., Linke, P., Brand, W.A.,
Kuhlmann, I., Horna, V., Schulze, E.-D., 2004. Laser
ablation-combustion-GC-IRMS—a new method for online analysis of intra-annual
variation of δ13C in tree rings. Tree Physiology 24: 1193–1201. Seibt, U., Rajabi, A., Griffiths, H. and Berry J.,
2008. Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia
155: 441-454. Sgherza, C., Cullen, L.E. and Grierson, P.F. 2010. Climate relationships with tree-ring
width and δ13C of three Callitris
species from semiarid woodlands in southwestern Australia. Australian
Journal of Botany 58:175-187. Shestakova, T.A.,
Aguilera, M., Ferrio, J.P., Gutiérrez, E., and Voltas, J., 2014. Unravelling
spatiotemporal tree-ring signals in Mediterranean oaks: A variance-covariance
modelling approach of carbon and oxygen isotope ratios. Tree Physiology
34(8):819-38. Sheu, D.D., Kou, P., Chiu, C.-H. and
Chen, M.-J. 1996. Variability of tree-ring δ13C in Taiwan
fir: Growth effect and response to May-October temperatures. Geochim. et Cosmochim. Acta 60:171-177. Sho, K., Takahashi, H.A. and Nakamura, T., 2002.
Reconstruction of climatic changes using tree-ring data of Japanese cypress
grown in the southern coastal region of Silva, L.C.R., Anand, M., Oliveira, J.M., Pillar, V.D.,
2009. Past century changes in Araucaria
angustifolia (Bertol.) Kuntze water use efficiency and growth in forest
and grassland ecosystems of southern Brazil: implications for forest
expansion. Global Change Biology 15:2387–2396.
Silva, L.C.R., Gómez-Guerrero, A., Doane, T.A., and
Horwath, W.R., 2015. Isotopic and nutritional evidence for species- and
site-specific responses to N deposition and elevated CO2 in
temperate forests. J. Geophys. Res. Biogeosci. 120:1110–1123, doi:10.1002/2014JG002865. Silva, L.C.R., and Horwath W.R., 2013. Explaining global increases in water use
efficiency: Why have we overestimated responses to rising atmospheric CO2
in natural forest ecosystems? PLoS One
8(1), e53089,
doi:10.1371/journal.pone.0053089. Skomarkova, M.V., Vaganov, E.A., Mund, M., Knohl, A.,
Linke, P., Boerner, A., and Schulze, E.-D., 2006. Inter-annual and seasonal
variability of radial growth, wood density and carbon isotope ratios in tree
rings of beech (Fagus sylvatica)
growing in Sladden, B., Loader, N.J., Young, G.H.F., and
McCarroll, D., 2018. Examination of stable carbon and oxygen isotopic
variability in the cellulose and wholewood of Castanea sativa Mill., Fagus
sylvatica L., Pinus sylvestris
L. and Quercus robur L. Acta
Silvae et Ligni 117: 47-54, http://doi.org/10.20315/ASetL.117.4
10.20315/ASetL.117.4. Sonninen, E. and Jungner, H. 1995. Stable carbon
isotopes in tree-rings of a Scots pine (Pinus
sylvestris L.) from northern Stuiver,
M. 1978. Atmospheric carbon dioxide and carbon reservoir changes. Science
129:253-258. Stuiver, M., Burk, R.L. and Quay, P.D. 1985. 13C/12C ratios and the
transfer of biospheric carbon to the atmosphere. J. Geophys. Res. 89:11731-11748. Stuiver, M. and
Braziunas, T.F. 1987. Tree cellulose 13C/12C isotope
ratios and climate change. Nature
328:58-60. Stuiver,
M. and Braziunas, T.F. 1988. Tree-ring carbon-isotope ratios re-examined. Nature
333: 712. Sutherland, E.K. and
Martin, B. 1990. Growth response of Pseudotsuga
menziesii to air pollution from copper smelting. Canadian Journal of Swanborough P.W., Lamont B.B. and February E.C., 2003. δ13C and water-use efficiency in
Australian grasstrees and South African conifers over the last century. Oecologia
136: 205-212. Takahashi, H.A.,
Yonenobu, H., Nakamura, T. and Wada, H. 2001. Seasonal fluctuation of stable
carbon isotopic composition in Japanese cypress tree rings from the last
glacial period: Possibility of paleoenvironment reconstruction. Radiocarbon
43:433-438. Tans, P.P. 1980. On
calculating the transfer of carbon-13 in reservoir models of the carbon
cycle. Tellus 32: 464-469. Tans,
P.P. and Mook, W.G. 1980. Past atmospheric CO2 levels and the 13C/12C
ratios in tree rings. Tellus 32:
268-283. Tang, K., Feng, X. and Funkhouser, G. 1999. The δ13C of tree rings in full-bark
and strip-bark bristlecone pine trees in the White Mountains of
California. Global Change Biology
5: 33-40. Tardif, J.C., Conciatori, F., Leavitt, S.W., 2008.
Tree rings, δ13C and climate in Picea glauca growing near Churchill, subarctic Manitoba,
Canada. Chemical Geology 252:88-101. Tarhule, A. and Leavitt, S.W., 2004. Stable-carbon
isotope composition in annual rings of Isorberlinia
doka, Daniella Oliveri, and Tamarindus indica and West African
climate. Dendrochronologia 22: 61-70. Tei, S., Sugimoto,
A., Yonenobu, H., Ohta, T., and Maximov, T.C., 2014. Growth and physiological responses of larch
trees to climate changes deduced from tree-ring widths and δ13C at two forest sites in eastern Siberia. Polar
Science 8:183-195. Treydte, K.S., Frank,
D.C., Saurer, M., Helle, G., Schleser, G.H. and Esper, J., 2009. Impact of
climate and CO2 on a millennium-long tree-ring carbon isotope
record. Geochimica et Cosmochimica Acta 73(16): 4635-4647. Treydte, K., Schleser,
G.H., Schweingruber, F.H., and Winiger, M., 2001. The
climatic significance of δ13C in subalpine spruces
(Lotschental, Swiss Alps). Tellus 33B:
593-611. Vaganov, E.A.,Schulze, E.-D., Skomarkova, M.V., Knohl, A., Brand, W.A.,
and Roscher, C., 2009. Intra-annual variability of anatomical structure and
δ13C values within tree rings of spruce and pine in
alpine, temperate and boreal Europe. Oecologia 161:729–745. van der Sleen, P., Groenendijk, P., Vlam, M., Anten,
N.P.R., Boom, A. Bongers, F., Pons, T.L., Terburg, G., and Zuidema, P.A.,
2015. No growth stimulation of tropical trees by 150 years of CO2
fertilization but water-use efficiency increased. Nature Geoscience 8:24-28. van der Sleen, P., Soliz Gamboa, C., Helle, G. Pons, T.
Anten, N., Zuidema, P., 2014. Understanding causes of tree growth response to
gap formation: Δ13C values in tree rings reveal a predominant
effect of light. Trees 28: 439–448. Verheyden, A.,
Roggeman, M., Bouillon, S., Elskens, M., Beeckman, H., and Koedam, N., 2005.
Comparison between δ13C of a-cellulose and bulk wood in the mangrove tree Rhizophora mucronata: Implications for
dendrochemistry. Chemical Geology 219:
275-282. Voelker, S.L., Brooks, J.R., Meinzer, F.C., Anderson, R.,
Bader, M.K.-F., Battipaglia, G., Becklin, K.M., Beerling, D., Bert, D.,
Betancourt, J.L., Dawson, T.E., Domec, J.C., Guyette, R.P., Körner, C.,
Leavitt, S.W., Linder, S., Marshall, J.D., Mildner, M., Ogée J., Panyushkina,
I., Plumpton, H.J., Pregitzer, K.S., Saurer, M., Smith, A.R., Siegwolf,
R.T.W., Stambaugh, M.C., Talhelm, A.F., Tardif, J.C., Van de Water, P.K.,
Ward, J.K., and Wingate, L., 2016. A dynamic leaf gas-exchange strategy is
conserved in woody plants under changing ambient CO2: Evidence from carbon
isotope discrimination in paleo and CO2 enrichment studies. Global Change Biology 22(2):889-902, doi:
10.1111/gcb.13102. von
Felten, S., Hattenschwiler, S., Saurer, M., and Siegwolf, R., 2007. Carbon
allocation in shoots of alpine treeline conifers in a CO2 enriched
environment. Trees-Structure and Function 21: 283-294. Wagener, K. 1978. Total anthropogenic CO2
production during the period 1800-1935 from carbon-13 measurements in tree
rings. Rad. and Environm. Biophys. 15: 101-111. Wagner, R., Insinna, P.A., Götz, B., Junge, S., and
Boettger, T., 2007. 13C discriminations of Pinus sylvestris vs. Pinus
ponderosa at a dry site in Walcroft, A.S., Silvester, W.B., Grace, J.C., Walcroft, A.S., Silvester, W.B., Whitehead, D. and Kelliher,
F.M., 1997. Seasonal changes in stable
carbon isotope ratios within annual rings of Pinus radiata reflect environmental regulation of growth
processes. Aust. J. Plant Physiol.
24: 57-68. Walia, A., Guy, R.D. and White, B., 2010. Carbon
isotope discrimination in western hemlock and its relationship to mineral
nutrition and growth. Tree Physiology 30: 728-740. Wang, W., Liu, X., An, W., Xu, G., and Zeng, X.,
2012. Increased intrinsic water-use
efficiency during a period with persistent decreased tree radial growth in
northwestern China: Causes and implications.
Forest Ecology and Management 275:14-22. Wang, W.Z., Liu, X.H., Shao, X.M., Leavitt, S., Xu,
G.B., An, W.L. and Qin, D.H., 2011. A
200 year temperature record from tree ring δ13C at the Qaidam
Basin of Tibetan Plateau after identifying the optimum method to correct for
changing atmospheric CO2 and δ13C. Journal of Geophysical Research 116,
G04022. Wang, W., Liu, X., Xu, G., Zeng, X., Wu, G., Zhang, X.,
and Qin, D., 2016. Temperature signal instability of tree-ring δ13C
chronology in the northeastern Qinghai–Tibetan Plateau. Global and Planetary
Change 139: 165-172, doi: 464 http://dx.doi.org/10.1016/j.gloplacha.2016.02.006
2016.02.006. Ward, J.K., Dawson, T.E., and Ehleringer, J.R.,
2002. Responses of Acer negundo genders to interannual
differences in water availability determined from carbon isotope ratios of
tree ring cellulose. Tree
Physiology 22: 339-346. Waring R.H. and Silvester, W.B. 1994. Variation in foliar δ13C
values within crowns of Pinus radiata
trees. Tree Physiology 14: 1203-1213. Waterhouse, J.S., Barker, A.C. and Carter, A.H.C.,
2000. Stable carbon isotopes in Scots
pine tree rings preserve a record of flow of the river Waterhouse, J.S., Switsur, V.R., Barker, A.C., Carter,
A.H.C., Hemming, D.L., Loader, N.J. and Robertson, Wieloch T, Ehlers I, Yu J, Frank D, Grabner M, Gessler
A, Schleucher J (2018) Intramolecular 13C analysis of tree rings
provides multiple plant ecophysiology signals covering decades. Scientific
Reports 8:5048, DOI:10.1038/s41598-018-23422-2. Wiesberg, L.H.G. and Tavares, T.M., 1987. The 13C/12C
record in wood of palmtrees. Geochimica et Cosmochimica Acta 51: 1783-1786. Wils, T.H.G., Robertson, I., Woodborne, S., Hall, G.,
Koprowski, M, and Eshetu, Z., 2016. Anthropogenic forcing increases the
water-use efficiency of African trees. J. Quat. Sci. 31(4): 386–390. Wilson, A.T. and Grinsted, M.J., 1977. 12C/13C in cellulose
and lignin as paleothermometers. Nature
265: 133-135. Woodley E.J., Loader N.J., McCarroll D., Young G.H.F.,
Robertson I., Heaton T.H.E. and Gagen M.H., 2012. Estimating uncertainty in
pooled stable isotope time-series from tree-rings. Chemical Geology 294/295:243—248. Xu, G., Liu, X., Qin, D., Chen, T., An, W., Wang, W.,
Wu, G., Zeng, X., 2013. Climate
warming and increasing atmospheric CO2 have contributed to
increased intrinsic water-use efficiency on the northeastern Tibetan Plateau
since 1850. Trees-Structure and
Function 27:465-475. Xu, G.B., Chen, T., Liu, X. H., Jin, L. Y., An, W.L.,
Wang, W.Z., 2011. Summer temperature
variations recorded in tree-ring δ13C values on the
northeastern Tibetan Plateau, Theor. Appl. Climatol. 105: 51-63, DOI:
10.1007/s00704-010-0370-z. Xu, Y., Li, W., Shao, X., Xu, Z., Nugroho, P.,
2014. Long-term trends in intrinsic
water-use efficiency and growth of subtropical Pinus tabulaeformis Carr. and Pinus taiwanensis Hayatain central
China. Journal of Soils and Sediments 14:917-927. Yoder, B.J., Ryan, M.G., Waring, R.H., Schoettle, A.W.
and Kaufmann, M.R., 1994. Evidence of reduced
photosynthetic rates of old trees. Forest
Science 40:513-527. Young, G.H.F., Bale, R.J., Loader, N.J., McCarroll, D.,
Nayling, N., and Vousden, N., 2012. Central England temperature since AD
1850: The potential of stable carbon isotopes in British oak trees to
reconstruct past summer temperatures. Journal of Quaternary Science 27:606–614. Young, G.H.F., McCarroll, D., Loader, N.J., and
Kirchhefer, A.J., 2010. A 500-year record of summer near-ground solar
radiation from tree-ring stable carbon isotopes. Holocene 20: 315-324. Yu, K.F., Zhao, J.X., Liu, T.S., Wang, P.X., Qian,
J.L., Chen, T.G. 2004. Alpha-cellulose δ13C variation in mangrove tree rings correlates well with annual sea
level trend between 1982 and 1999. Geophysical Research Letters 31, L11203, doi:10.1029/2004GL019450.
Yu, L., Rongmo, L. Fuqing, S. and Guisheng, T., 1990. δ13C analysis of tree rings from Mt. Zhang, J.W., Cregg, B.M. 1996. Variation in stable
carbon isotope discrimination among and within exotic conifer species grown
in eastern Zhang,
J.W., Feng, Z., Cregg, B.M. and Shumann, C.M., 1997. Carbon isotopic
composition, gas exchange, and growth of thee populations of ponderosa pine
differing in drought tolerance. Tree Physiology 17: 461-466. Zhang,
J.W. and Marshall, J.D., 1995. Variation in carbon isotope discrimination and
photosynthetic gas exchange among populations of Pseudotsuga menziesii and Pinus
ponderosa in different environments. Functional Ecology 9: 402-412. Zhang, X., Liu, X., Zhang, Q., Zeng, X., Xu, G.,
Wu, G., Wang, W., 2018. Species-specific tree growth and intrinsic water-use
efficiency of Dahurian larch (Larix
gmelinii) and Mongolian pine (Pinus
sylvestris var. mongolica)
growing in a boreal permafrost region of the Greater Hinggan Mountains,
Northeastern China. Agricultural and Forest Meteorology 248:145–155. Zhang,
Y., Chen, T., An, L., Li, Y., 2007. The variations of stable-carbon isotope
ratios in Qilian juniper in northwestern Zhao,
X.-Y., Qian, J.-L., Wang, J., He, Q.-Y., Wang, Z.-L., Chen, C.-Z., 2006.
Using a tree ring δ13C annual series to reconstruct
atmospheric CO2 concentration over the past 300 years. Pedosphere
16: 371-379. Zhenghua,
L., Rongmo, L, Zhisheng, A. And Yu, L., 1995. Annual variations of 13C
in tree rings from Huangling of Shaanxi province and their climatic
implications. Scientia Geologica Sinica 1: 161-167. δ15N in Tree Rings Bukata, A.R.,
and Kyser, T.K., 2005. Response of the Nitrogen Isotopic Composition of
Tree-Rings Following Tree-Clearing and Land-Use Change. Environmental Science and Technology
39: 7777-7783. Bukata,
A.R., and Kyser, T.K., 2007. Carbon and nitrogen isotope variations in
tree-rings as records of perturbations in regional carbon and nitrogen
cycles. Environ Sci Technol. 41(4):1331-8 Caceres,
M.L., Mizota, C., Yamanaka, T., Nobori, Y., 2011. Effects of pre-treatment on
the nitrogen isotope composition of Japanese black pine (Pinus thunbergii) tree-rings as affected by high N input. Rapid
Commun. Mass Spectrom. 25(21):
3298-3302. Choi,
W.J., Lee, S.-M., Chang, S.X., and Ro, H.-M., 2005. Variations of δ13C
and δ15N in Pinus
Densiflora tree-rings and their relationship to environmental changes in
eastern Korea. Water, Air, and Soil Pollution 164: 173-187. Couto-Vázquez,
A., and González-Prieto,
S. J., 2009. Effects of climate, tree
age, dominance and growth on δ15N in young pinewoods. Trees-Structure and Function 24:507-514. Doucet, A.,
Savard, M.M., Bégin, C., Smirnoff, A., 2011.
Is wood pre-treatment essential for tree-ring nitrogen concentration
and isotope analysis? Rapid Commun.
Mass Spectrom. 25(4): 469-75. Doucet, A.,
Savard, M.M., Bégin, C., Smirnoff, A., 2012. Tree-ring δ15N
values to infer air quality changes at regional scale. Chemical Geology
320/321:9–16. Elhani, S.,
Guehl, J.-M., Nys, C., Picard, J.-F., and Dupouey, J.-L., 2005. Impact of
fertilization on tree-ring δ15N
and δ13C in
beech stands: a retrospective analysis. Tree Physiology 25: 1437-1446. Elhani,
S., Lema, B.F., Zeller, B., Brechet, C., Guehl, J.-M., and Dupouey, J.-L.,
2003. Inter-annual mobility of nitrogen between beech rings: A labeling
experiment. Ann. For. Sci. 60: 503-508. Guerrieri,
R., Mencuccini, M., Sheppard, L.J., Saurer, M., Perks, M., Levy, P., Sutton,
M.A., Borghetti, M., and Grace, J., 2011. The legacy of enhanced N and S
deposition as revealed by the combined analysis of δ13C,
δ18O and δ15N in tree rings. Global Change
and Biology 17:1946-1962. Guerrieri,
R., Siegwolf, R.T.W., Saurer, M., Ripullone, F., Mencuccini, M., and
Borghetti, M., 2010. Anthropogenic NOx
emissions alter the intrinsic water-use efficiency (WUEi) for Quercus cerris stands under
Mediterranean climate conditions. Environmental Pollution 158:2841-2847. Hart, S.C. and Classen, A.T. 2003. Potential for assessing long-term dynamics
in soil nitrogen availability from variations in δ15N of tree
rings. Isotopes Environ. Health
Stud. 39: 15-28. Hietz,
P., Dunisch, O., Wanek, W., 2010.
Long-term trends in nitrogen isotope composition and nitrogen
concentration in Brazilian rainforest trees suggest changes in nitrogen
cycle. Environ. Sci. Technol. 44:1191-6. Huang, Z., Liu, B.,
Davis, M., Sardans, J., Peńuelas, J., and Billings, S., 2016. Long-term
nitrogen deposition linked to reduced water use efficiency in forests with
low phosphorus availability. New Phytologist 210:431-442, doi:10.1111/nph.13785. Jennings,
K., Guerrieri, R., Vadeboncoeur, M., and Asbjornsen, H., 2016. Response of Quercus velutina growth and water use
efficiency to climate variability and nitrogen fertilization in a temperate
deciduous forest in the northeastern U.S. Tree Physiology 36(4):428-443. McLauchlan,
K.K., Craine,
J.M., Oswald, W.W., Leavitt, P.R., Likens, G.E., 2007. Changes in nitrogen
cycling during the past century in a northern hardwood forest. Proc. Natl.
Acad. Sci. 107:7466–7470. Mizota,
C., Lopez Caceres, M.L., Yamanaka, T., Nobori, Y., 2011. Differential response of two Pinus spp. to avian nitrogen input as
revealed by nitrogen isotope analysis for tree rings. Isotopes Environ. Health Stud. 47(1): 62-70. Peńuelas, J., and Estiarte, M., 1997. Trends in
plant carbon concentration and plant demand for N throughout this century. Oecologia
109:69–73. Poulson, S.R., Chamberlain, P.C., and Friedland,
A.J. 1995. Nitrogen isotope variation of tree rings as a potential indicator
of environmental change. Chemical Geology (Isotope Geoscience Section)
125: 307-315. Saurer,
M., Cherubini, P., Ammann, M., De Cinti, B. and Siegwolf, R., 2004. First detection of nitrogen from NOx in tree rings: A 15N/14N study near a motorway. Atmospheric Environment 38: 2779-2787. Saurer, M., Siegwolf,
R.T.W., 2007. Human impacts on tree-ring growth reconstructed from
stable isotopes. In Stable Isotopes as Indicators of
Ecological Change, Dawson, T.E., Siegwolf, R.T.W. (eds.), Terrestrial Ecology, Vol. 1, pp.
49-62, Elsevier. Savard, M.M., Begin, C., Smirnoff, A., Sheppard,
P.R. and Thompson, T.L., 2000. Effect of extraction pretreatment on radial
variation of nitrogen concentration in tree rings. Journal of
Environmental Quality 29:
2037-2042. Silva, L.C.R., Gómez-Guerrero, A., Doane, T.A., and
Horwath, W.R., 2015. Isotopic and nutritional evidence for species- and
site-specific responses to N deposition and elevated CO2 in
temperate forests. J. Geophys. Res. Biogeosci. 120:1110–1123, doi:10.1002/2014JG002865. Tomlinson, G., Siegwolf, R.T., Buchmann, N.,
Schleppi, P., Waldner, P., and Weber, P, 2014. The mobility of nitrogen across tree-rings
of Norway spruce (Picea abies L.)
and the effect of extraction method on tree-ring δ15N and
δ13C values. Rapid
Communications in Mass Spectrometry 28(11):1258-64. van der Sleen, P., Vlam, M.,
Groenendijk, P., Anten, N.P., Bongers, F., Bunyavejchewin, S., Hietz, P.,
Pons, T.L., Zuidema, P.A., 2015. 15N
in tree rings as a bio-indicator of changing nitrogen cycling in tropical
forests: an evaluation at three sites using two sampling methods. Frontiers
in Plant Sci. 6:229. δ34S
in Tree Rings Giesemann, A.,
Hofmann, F., Schlechtriemen, U. and Jung, K. (2005) An attempt to evaluate
sulphur (S) and nitrogen (N) inputs into a forest ecosystem retrospectively
by means of stable N and S isotope analysis in tree rings. Abhandlungen und
Berichte des Naturkundemuseums Görlitz 76, 101–115. Kawamura, H.,
Matsuoka, N., Momoshima, N., Koike, M., and Takashima, Y., 2006. Isotopic
evidence in tree rings for historical changes in atmospheric sulfur
sources. Environmental Science
& Technology 40(18):
5750-5754. Novak, M., Jackova, I., Zemanova, L., Fottova, D., Rechova, E., Buzek,
F., and Erbanova, L., 2009. Controls on sulfur content in tree rings of Norway
spruce and European beech at a heavily polluted site/ Geochemical Journal 43: e1-e4. Yang, W.,
Spencer, R.J. and Krouse, H.R. 1996.
Stable sulfur isotope hydrogeochemical studies using desert shrubs and
tree rings, |
|
|